Show simple item record

dc.contributor.authorLippert, Ross A.
dc.contributor.authorStrang, Gilbert
dc.date.accessioned2011-06-03T19:10:11Z
dc.date.available2011-06-03T19:10:11Z
dc.date.issued2009-06
dc.date.submitted2009-05
dc.identifier.issn1081-3810
dc.identifier.urihttp://hdl.handle.net/1721.1/63178
dc.description.abstractThe relationship between the Jordan forms of the matrix products AB and BA for some given A and B was first described by Harley Flanders in 1951. Their non-zero eigenvalues and non-singular Jordan structures are the same, but their singular Jordan block sizes can differ by 1. We present an elementary proof that owes its simplicity to a novel use of the Weyr characteristic.en_US
dc.language.isoen_US
dc.publisherInternational Linear Algebra Societyen_US
dc.relation.isversionofhttp://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp281-288.pdfen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Strang via Michael Nogaen_US
dc.titleThe Jordan forms of AB and BA∗en_US
dc.typeArticleen_US
dc.identifier.citationLippert, Ross A. and Gilbert Strang. "The Jordan Forms of AB and BA*." Electronic Journal of Linear Algebra 18 (2009) : 281-288.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverStrang, Gilbert
dc.contributor.mitauthorStrang, Gilbert
dc.relation.journalElectronic Journal of Linear Algebraen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLippert, Ross A.; Strang, Gilbert
dc.identifier.orcidhttps://orcid.org/0000-0001-7473-9287
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record