| dc.contributor.author | Hajiaghayi, Mohammad Taghi | |
| dc.contributor.author | Demaine, Erik D. | |
| dc.contributor.author | Mohar, Bojan | |
| dc.date.accessioned | 2011-06-09T18:24:01Z | |
| dc.date.available | 2011-06-09T18:24:01Z | |
| dc.date.issued | 2010-09 | |
| dc.date.submitted | 2006-09 | |
| dc.identifier.issn | 0209-9683 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/63808 | |
| dc.description | http://www.springerlink.com/content/h96773m010737357/fulltext.pdf | |
| dc.description.abstract | We prove that the edges of every graph of bounded (Euler) genus can be partitioned into
any prescribed number k of pieces such that contracting any piece results in a graph of bounded
treewidth (where the bound depends on k). This decomposition result parallels an analogous,
simpler result for edge deletions instead of contractions, obtained in [Bak94, Epp00, DDO+04,
DHK05], and it generalizes a similar result for \compression" (a variant of contraction) in
planar graphs [Kle05]. Our decomposition result is a powerful tool for obtaining PTASs for
contraction-closed problems (whose optimal solution only improves under contraction), a much
more general class than minor-closed problems. We prove that any contraction-closed problem
satisfying just a few simple conditions has a PTAS in bounded-genus graphs. In particular, our
framework yields PTASs for the weighted Traveling Salesman Problem and for minimum-weight
c-edge-connected submultigraph on bounded-genus graphs, improving and generalizing previous
algorithms of [GKP95, AGK+98, Kle05, Gri00, CGSZ04, BCGZ05]. We also highlight the only
main di culty in extending our results to general H-minor-free graphs. | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Bolyai Society/Springer-Verlag | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1007/s00493-010-2341-5 | |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
| dc.source | MIT web domain | en_US |
| dc.title | Approximation Algorithms via Contraction Decomposition | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Demaine, Erik, MohammadTaghi Hajiaghayi and Bojan Mohar. “Approximation Algorithms via Contraction Decomposition.” Combinatorica 30.5 (2010) : 533-552. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
| dc.contributor.approver | Demaine, Erik D. | |
| dc.contributor.mitauthor | Demaine, Erik D. | |
| dc.relation.journal | Combinatorica | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Demaine, Erik D.; Hajiaghayi, MohammadTaghi; Mohar, Bojan | |
| dc.identifier.orcid | https://orcid.org/0000-0003-3803-5703 | |
| mit.license | OPEN_ACCESS_POLICY | en_US |
| mit.metadata.status | Complete | |