Show simple item record

dc.contributor.authorHajiaghayi, Mohammad Taghi
dc.contributor.authorDemaine, Erik D.
dc.contributor.authorMohar, Bojan
dc.date.accessioned2011-06-09T18:24:01Z
dc.date.available2011-06-09T18:24:01Z
dc.date.issued2010-09
dc.date.submitted2006-09
dc.identifier.issn0209-9683
dc.identifier.urihttp://hdl.handle.net/1721.1/63808
dc.descriptionhttp://www.springerlink.com/content/h96773m010737357/fulltext.pdf
dc.description.abstractWe prove that the edges of every graph of bounded (Euler) genus can be partitioned into any prescribed number k of pieces such that contracting any piece results in a graph of bounded treewidth (where the bound depends on k). This decomposition result parallels an analogous, simpler result for edge deletions instead of contractions, obtained in [Bak94, Epp00, DDO+04, DHK05], and it generalizes a similar result for \compression" (a variant of contraction) in planar graphs [Kle05]. Our decomposition result is a powerful tool for obtaining PTASs for contraction-closed problems (whose optimal solution only improves under contraction), a much more general class than minor-closed problems. We prove that any contraction-closed problem satisfying just a few simple conditions has a PTAS in bounded-genus graphs. In particular, our framework yields PTASs for the weighted Traveling Salesman Problem and for minimum-weight c-edge-connected submultigraph on bounded-genus graphs, improving and generalizing previous algorithms of [GKP95, AGK+98, Kle05, Gri00, CGSZ04, BCGZ05]. We also highlight the only main di culty in extending our results to general H-minor-free graphs.en_US
dc.language.isoen_US
dc.publisherBolyai Society/Springer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00493-010-2341-5
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleApproximation Algorithms via Contraction Decompositionen_US
dc.typeArticleen_US
dc.identifier.citationDemaine, Erik, MohammadTaghi Hajiaghayi and Bojan Mohar. “Approximation Algorithms via Contraction Decomposition.” Combinatorica 30.5 (2010) : 533-552.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverDemaine, Erik D.
dc.contributor.mitauthorDemaine, Erik D.
dc.relation.journalCombinatoricaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDemaine, Erik D.; Hajiaghayi, MohammadTaghi; Mohar, Bojan
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record