Show simple item record

dc.contributor.authorBhatia, Gaurav
dc.contributor.authorBansal, Vikas
dc.contributor.authorHarismendy, Olivier
dc.contributor.authorSchork, Nicholas J.
dc.contributor.authorTopol, Eric J.
dc.contributor.authorFrazer, Kelly
dc.contributor.authorBafna, Vineet
dc.date.accessioned2011-06-16T19:14:34Z
dc.date.available2011-06-16T19:14:34Z
dc.date.issued2010-10
dc.date.submitted2010-01
dc.identifier.issn1553-7358
dc.identifier.issn1553-734X
dc.identifier.urihttp://hdl.handle.net/1721.1/64465
dc.description.abstractGenome wide association (GWA) studies, which test for association between common genetic markers and a disease phenotype, have shown varying degrees of success. While many factors could potentially confound GWA studies, we focus on the possibility that multiple, rare variants (RVs) may act in concert to influence disease etiology. Here, we describe an algorithm for RV analysis, RARECOVER. The algorithm combines a disparate collection of RVs with low effect and modest penetrance. Further, it does not require the rare variants be adjacent in location. Extensive simulations over a range of assumed penetrance and population attributable risk (PAR) values illustrate the power of our approach over other published methods, including the collapsing and weighted-collapsing strategies. To showcase the method, we apply RARECOVER to re-sequencing data from a cohort of 289 individuals at the extremes of Body Mass Index distribution (NCT00263042). Individual samples were re-sequenced at two genes, FAAH and MGLL, known to be involved in endocannabinoid metabolism (187Kbp for 148 obese and 150 controls). The RARECOVER analysis identifies exactly one significantly associated region in each gene, each about 5 Kbp in the upstream regulatory regions. The data suggests that the RVs help disrupt the expression of the two genes, leading to lowered metabolism of the corresponding cannabinoids. Overall, our results point to the power of including RVs in measuring genetic associations.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant (IIS-0810905)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U19 AG023122-05)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01 MH078151-03)en_US
dc.description.sponsorshipLouis & Harold Price Foundationen_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (N01 MH22005)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U01-DA024417-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (P50 MH081755-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01 AG030474-02)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (N01 MH022005)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01 HL089655-02)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01 MH080134-03)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U54 CA143906-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (UL1 RR025774-03)en_US
dc.description.sponsorshipScripps Genomic Medicine Programen_US
dc.description.sponsorshipNational Human Genome Research Institute (U.S.) (Grant Number T32 HG002295 )en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pcbi.1000954en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/en_US
dc.sourcePLoSen_US
dc.titleA Covering Method for Detecting Genetic Associations between Rare Variants and Common Phenotypesen_US
dc.typeArticleen_US
dc.identifier.citationBhatia, Gaurav et al. "A Covering Method for Detecting Genetic Associations between Rare Variants and Common Phenotypes." PLoS Comput Biol, 2010 6(10): e1000954.en_US
dc.contributor.departmentWhitaker College of Health Sciences and Technologyen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.approverBhatia, Gaurav
dc.contributor.mitauthorBhatia, Gaurav
dc.relation.journalPLoS Computational Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBhatia, Gaurav; Bansal, Vikas; Harismendy, Olivier; Schork, Nicholas J.; Topol, Eric J.; Frazer, Kelly; Bafna, Vineeten
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record