Some calculable contributions to entanglement entropy
Author(s)
Hertzberg, Mark Peter; Wilczek, Frank
DownloadHertzberg-2011-Some calculable contributions to entanglement entropy.pdf (121.2Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Entanglement entropy appears as a central property of quantum systems in broad areas of physics. However, its precise value is often sensitive to unknown microphysics, rendering it incalculable. By considering parametric dependence on correlation length, we extract finite, calculable contributions to the entanglement entropy for a scalar field between the interior and exterior of a spatial domain of arbitrary shape. The leading term is proportional to the area of the dividing boundary; we also extract finite subleading contributions for a field defined in the bulk interior of a waveguide in 3+1 dimensions, including terms proportional to the waveguide’s cross-sectional geometry: its area, perimeter length, and integrated curvature. We also consider related quantities at criticality and suggest a class of systems for which these contributions might be measurable.
Date issued
2011-02Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Physical Review Letters
Publisher
American Physical Society
Citation
Hertzberg, Mark P. and Frank Wilczek. "Some Calculable Contributions to Entanglement Entropy." Phys. Rev. Lett. 106.5, 050404 (2011) [4 pages] © 2011 American Physical Society.
Version: Final published version
ISSN
0031-9007