Show simple item record

dc.contributor.authorZargham, Michael
dc.contributor.authorRibeiro, Alejandro
dc.contributor.authorOzdaglar, Asuman E.
dc.contributor.authorJadbabaie, Ali
dc.date.accessioned2011-06-21T18:46:36Z
dc.date.available2011-06-21T18:46:36Z
dc.date.issued2011-06
dc.identifier.isbn978-1-4577-0080-4
dc.identifier.issn0743-1619
dc.identifier.otherINSPEC Accession Number: 12338424
dc.identifier.urihttp://hdl.handle.net/1721.1/64639
dc.descriptionURL to paper listed on conference siteen_US
dc.description.abstractDual descent methods are commonly used to solve network optimization problems because their implementation can be distributed through the network. However, their convergence rates are typically very slow. This paper introduces a family of dual descent algorithms that use approximate Newton directions to accelerate the convergence rate of conventional dual descent. These approximate directions can be computed using local information exchanges thereby retaining the benefits of distributed implementations. The approximate Newton directions are obtained through matrix splitting techniques and sparse Taylor approximations of the inverse Hessian.We show that, similarly to conventional Newton methods, the proposed algorithm exhibits superlinear convergence within a neighborhood of the optimal value. Numerical analysis corroborates that convergence times are between one to two orders of magnitude faster than existing distributed optimization methods. A connection with recent developments that use consensus iterations to compute approximate Newton directions is also presented.en_US
dc.description.sponsorshipU.S. Army Research Laboratory (MAST Collaborative Technology Alliance)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (ARO P-57920- NS)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER CCF-0952867)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF CCF-1017454)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR MURI N000140810747)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF-ECS-0347285)en_US
dc.language.isoen_US
dc.publisherIEEE Control Systems Societyen_US
dc.relation.isversionofhttps://css.paperplaza.net/conferences/conferences/2011ACC/program/2011ACC_ContentListWeb_2.html#thb10_05en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleAccelerated Dual Descent for Network Optimizationen_US
dc.typeArticleen_US
dc.identifier.citationZargham, Michael et al."Accelerated Dual Descent for Network Optimization." Papers of the 2011 American Control Conference, June 29-July 01, 2011, San Francisco, CA, USA.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverOzdaglar, Asuman E.
dc.contributor.mitauthorOzdaglar, Asuman E.
dc.relation.journalProceedings of American Control Conference (ACC 2011)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsZargham, Michael; Ribeiro, Alejandro; Ozdaglar, Asuman ; Jadbabaie, Ali
dc.identifier.orcidhttps://orcid.org/0000-0002-1827-1285
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record