MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

What and Where: A Bayesian inference theory of visual attention

Author(s)
Chikkerur, Sharat; Serre, Thomas R.; Tan, Cheston; Poggio, Tomaso A.
Thumbnail
DownloadVR-09-397.pdf (648.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
In the theoretical framework of this paper, attention is part of the inference process that solves the visual recognition problem of what is where. The theory proposes a computational role for attention and leads to a model that predicts some of its main properties at the level of psychophysics and physiology. In our approach, the main goal of the visual system is to infer the identity and the position of objects in visual scenes: spatial attention emerges as a strategy to reduce the uncertainty in shape information while feature-based attention reduces the uncertainty in spatial information. Featural and spatial attention represent two distinct modes of a computational process solving the problem of recognizing and localizing objects, especially in difficult recognition tasks such as in cluttered natural scenes. We describe a specific computational model and relate it to the known functional anatomy of attention. We show that several well-known attentional phenomena – including bottom-up pop-out effects, multiplicative modulation of neuronal tuning curves and shift in contrast responses – all emerge naturally as predictions of the model. We also show that the Bayesian model predicts well human eye fixations (considered as a proxy for shifts of attention) in natural scenes.
Date issued
2010-10
URI
http://hdl.handle.net/1721.1/64647
Department
Massachusetts Institute of Technology. Center for Biological & Computational Learning; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; McGovern Institute for Brain Research at MIT
Journal
Visual Research
Publisher
Elsevier B.V.
Citation
Chikkerur, Sharat et al. “What and Where: A Bayesian Inference Theory of Attention.” Vision Research 50.22 (2010) : 2233-2247.
Version: Author's final manuscript
ISSN
0042-6989

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.