MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Systematic Dissection and Trajectory-Scanning Mutagenesis of the Molecular Interface That Ensures Specificity of Two-Component Signaling Pathways

Author(s)
Capra, Emily Jordan; Perchuk, Barrett; Lubin, Emma Alexandra; Ashenberg, Orr; Skerker, Jeffrey M.; Laub, Michael T; ... Show more Show less
Thumbnail
DownloadCapra-2010-Systematic Dissection and Trajectory-Scanning Mutagenesis of the Molecular Interface That Ensures Specificity of Two-Component Signaling Pathways.pdf (3.524Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.5/
Metadata
Show full item record
Abstract
Two-component signal transduction systems enable bacteria to sense and respond to a wide range of environmental stimuli. Sensor histidine kinases transmit signals to their cognate response regulators via phosphorylation. The faithful transmission of information through two-component pathways and the avoidance of unwanted cross-talk require exquisite specificity of histidine kinase-response regulator interactions to ensure that cells mount the appropriate response to external signals. To identify putative specificity-determining residues, we have analyzed amino acid coevolution in two-component proteins and identified a set of residues that can be used to rationally rewire a model signaling pathway, EnvZ-OmpR. To explore how a relatively small set of residues can dictate partner selectivity, we combined alanine-scanning mutagenesis with an approach we call trajectory-scanning mutagenesis, in which all mutational intermediates between the specificity residues of EnvZ and another kinase, RstB, were systematically examined for phosphotransfer specificity. The same approach was used for the response regulators OmpR and RstA. Collectively, the results begin to reveal the molecular mechanism by which a small set of amino acids enables an individual kinase to discriminate amongst a large set of highly-related response regulators and vice versa. Our results also suggest that the mutational trajectories taken by two-component signaling proteins following gene or pathway duplication may be constrained and subject to differential selective pressures. Only some trajectories allow both the maintenance of phosphotransfer and the avoidance of unwanted cross-talk.
Date issued
2010-11
URI
http://hdl.handle.net/1721.1/64739
Department
Massachusetts Institute of Technology. Computational and Systems Biology Program; Massachusetts Institute of Technology. Department of Biology
Journal
PLoS Genetics
Publisher
Public Library of Science
Citation
Capra, Emily J. et al. "Systematic Dissection and Trajectory-Scanning Mutagenesis of the Molecular Interface That Ensures Specificity of Two-Component Signaling Pathways." PLoS Genetics 6.11 (2010).
Version: Final published version
ISSN
1553-7404
1553-7390

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.