Efficient Planning under Uncertainty with Macro-actions
Author(s)
He, Ruijie; Brunskill, Emma; Roy, Nicholas
DownloadHe-2011-Efficient Planning under Uncertainty with Macro-actions.pdf (1.415Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Deciding how to act in partially observable environments remains an active area of research.
Identifying good sequences of decisions is particularly challenging when good control performance
requires planning multiple steps into the future in domains with many states. Towards addressing
this challenge, we present an online, forward-search algorithm called the Posterior Belief Distribution
(PBD). PBD leverages a novel method for calculating the posterior distribution over beliefs
that result after a sequence of actions is taken, given the set of observation sequences that could be
received during this process. This method allows us to efficiently evaluate the expected reward of a
sequence of primitive actions, which we refer to as macro-actions. We present a formal analysis of
our approach, and examine its performance on two very large simulation experiments: scientific exploration
and a target monitoring domain. We also demonstrate our algorithm being used to control
a real robotic helicopter in a target monitoring experiment, which suggests that our approach has
practical potential for planning in real-world, large partially observable domains where a multi-step
look ahead is required to achieve good performance.
Date issued
2011-02Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Aeronautics and AstronauticsJournal
Journal of Artificial Intelligence Research
Publisher
AI Access Foundation
Citation
He, Ruijie, Emma Brunskill, and Nicholas Roy. "Efficient Planning under Uncertainty with Macro-actions." Journal of Artificial Intelligence Research 40 (2011) 523-570. © 2011 AI Access Foundation.
Version: Final published version
ISSN
1076-9757
1943-5037