Show simple item record

dc.contributor.authorKim, Gunhee
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2011-07-06T15:56:52Z
dc.date.available2011-07-06T15:56:52Z
dc.date.issued2009-12
dc.identifier.isbn9781615679119
dc.identifier.urihttp://hdl.handle.net/1721.1/64744
dc.description.abstractThis paper proposes a fast and scalable alternating optimization technique to detect regions of interest (ROIs) in cluttered Web images without labels. The proposed approach discovers highly probable regions of object instances by iteratively repeating the following two functions: (1) choose the exemplar set (i.e. a small number of highly ranked reference ROIs) across the dataset and (2) refine the ROIs of each image with respect to the exemplar set. These two subproblems are formulated as ranking in two different similarity networks of ROI hypotheses by link analysis. The experiments with the PASCAL 06 dataset show that our unsupervised localization performance is better than one of state-of-the-art techniques and comparable to supervised methods. Also, we test the scalability of our approach with five objects in Flickr dataset consisting of more than 200K images.en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.relation.isversionofhttp://books.nips.cc/papers/files/nips22/NIPS2009_0004.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleUnsupervised detection of regions of interest using iterative link analysisen_US
dc.typeArticleen_US
dc.identifier.citationKim, Gunhee and Antonio Torralba. "Unsupervised Detection of Regions of Interest Using Iterative Link Analysis." Papers of the 23rd Annual Conference on Neural Information Processing Systems 2009, December 7-10, 2009, Vancouver, B.C., Canada.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverTorralba, Antonio
dc.contributor.mitauthorTorralba, Antonio
dc.relation.journalPapers of the 23rd Annual Conference on Neural Information Processing Systems 2009, NIPS 2009en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsKim, Gunhee; Torralba, Antonio
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record