Show simple item record

dc.contributor.authorKida, Shinichiro
dc.contributor.authorYang, Jiayan
dc.contributor.authorPrice, James F.
dc.date.accessioned2011-07-06T16:25:06Z
dc.date.available2011-07-06T16:25:06Z
dc.date.issued2009-02
dc.date.submitted2008-06
dc.identifier.issn0022-3670
dc.identifier.issn1520-0485
dc.identifier.urihttp://hdl.handle.net/1721.1/64746
dc.description.abstractMarginal sea overflows and the overlying upper ocean are coupled in the vertical by two distinct mechanisms— by an interfacial mass flux from the upper ocean to the overflow layer that accompanies entrainment and by a divergent eddy flux associated with baroclinic instability. Because both mechanisms tend to be localized in space, the resulting upper ocean circulation can be characterized as a b plume for which the relevant background potential vorticity is set by the slope of the topography, that is, a topographic b plume. The entrainment-driven topographic b plume consists of a single gyre that is aligned along isobaths. Thecirculation is cyclonic within the upper ocean (water columns are stretched). The transport within one branch of the topographic b plume may exceed the entrainment flux by a factor of 2 or more. Overflows are likely to be baroclinically unstable, especially near the strait. This creates eddy variability in both the upper ocean and overflow layers and a flux of momentum and energy in the vertical. In the time mean, the eddies accompanying baroclinic instability set up a double-gyre circulation in the upper ocean, an eddy-driven topographic b plume. In regions where baroclinic instability is growing, the momentumflux from the overflow into the upper ocean acts as a drag on the overflow and causes the overflow to descend the slope at a steeper angle than what would arise from bottom friction alone. Numerical model experiments suggest that the Faroe Bank Channel overflow should be the most prominent example of an eddy-driven topographic b plume and that the resulting upper-layer transport should be comparable to that of the overflow. The overflow-layer eddies that accompany baroclinic instability are analogous to those observed in moored array data. In contrast, the upper layer of the Mediterranean overflow is likely to be dominated more by an entrainment-driven topographic b plume. The difference arises because entrainment occurs at a much shallower location for the Mediterranean case and the background potential vorticity gradient of the upper ocean is much larger.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant OCE04-24741)en_US
dc.description.sponsorshipClimate Process Team on Gravity Current Entrainmenten_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Grant OCE-0611530)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Grant OCE-0351055)en_US
dc.language.isoen_US
dc.publisherAmerican Meteorological Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1175/2008JPO3934.1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Meteorological Societyen_US
dc.titleMarginal sea overflows and the upper ocean interactionen_US
dc.typeArticleen_US
dc.identifier.citationKida, Shinichiro, Jiayan Yang, and James F. Price. “Marginal Sea Overflows and the Upper Ocean Interaction.” J. Phys. Oceanogr. 39.2 (2011) : 387-403. © 2010 American Meteorological Society.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.approverKida, Shinichiro
dc.contributor.mitauthorKida, Shinichiro
dc.relation.journalJournal of Physical Oceanographyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKida, Shinichiro; Yang, Jiayan; Price, James F.en
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record