Extreme mass-ratio inspirals in the effective-one-body approach: Quasicircular, equatorial orbits around a spinning black hole
Author(s)
Yunes, Nicolas; Buonanno, Alessandra; Pan, Yi; Barausse, Enrico; Miller, M. Coleman; Throwe, William T.; Hughes, Scott A; ... Show more Show less
DownloadYunes-2011-Extreme mass-ratio i.pdf (847.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We construct effective-one-body waveform models suitable for data analysis with the Laser Interferometer Space Antenna for extreme mass-ratio inspirals in quasicircular, equatorial orbits about a spinning supermassive black hole. The accuracy of our model is established through comparisons against frequency-domain, Teukolsky-based waveforms in the radiative approximation. The calibration of eight high-order post-Newtonian parameters in the energy flux suffices to obtain a phase and fractional amplitude agreement of better than 1 rad and 1%, respectively, over a period between 2 and 6 months depending on the system considered. This agreement translates into matches higher than 97% over a period between 4 and 9 months, depending on the system. Better agreements can be obtained if a larger number of calibration parameters are included. Higher-order mass-ratio terms in the effective-one-body Hamiltonian and radiation reaction introduce phase corrections of at most 30 rad in a 1 yr evolution. These corrections are usually 1 order of magnitude larger than those introduced by the spin of the small object in a 1 yr evolution. These results suggest that the effective-one-body approach for extreme mass-ratio inspirals is a good compromise between accuracy and computational price for Laser Interferometer Space Antenna data-analysis purposes.
Date issued
2011-02Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space ResearchJournal
Physical Review D
Publisher
American Physical Society
Citation
Yunes, Nicolas et al. "Extreme mass-ratio inspirals in the effective-one-body approach: Quasicircular, equatorial orbits around a spinning black hole." Phys. Rev. D 83, 044044 (2011) [21 pages] © 2011 American Physical Society.
Version: Final published version