Show simple item record

dc.contributor.authorVaranasi, Kripa K.
dc.contributor.authorDeng, Tao
dc.contributor.authorHsu, Ming
dc.contributor.authorBhate, Nitin
dc.date.accessioned2011-07-07T19:23:28Z
dc.date.available2011-07-07T19:23:28Z
dc.date.issued2009-05
dc.identifier.isbn9781439817858
dc.identifier.urihttp://hdl.handle.net/1721.1/64767
dc.descriptionURL to paper listed on conference siteen_US
dc.description.abstractIn this paper, we present static and dynamic wetting interactions of water droplets on a variety of superhydrophobic surfaces. For sessile droplets, wetting states were determined by measuring contact angles and comparing them to that obtained from equilibrium Cassie and Wenzel states. Surprisingly, we find that roll-off angles are minimized on surfaces expected to induce Wenzel-like wetting in equilibrium. We argue that droplets on these surfaces are metastable Cassie droplets whose internal Laplace pressure is insufficient to overcome the capillary pressure resulting from the energy barrier required to completely wet the posts. In the case of impacting droplets the water hammer and Bernoulli pressures must be compared with the capillary pressure. Experiments with impacting droplets using a high-speed camera and specific surface textures that can delineate various wetting regimes show very good agreement with this simple pressurebalance model. These studies show that hierarchical micronano surfaces are optimum for droplet impact resistance.en_US
dc.description.sponsorshipGE Global Research Centeren_US
dc.language.isoen_US
dc.publisherNano Science and Technology Instituteen_US
dc.relation.isversionofhttp://www.nsti.org/Nanotech2009/abs.html?i=761en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleHierarchical Superhydrophobic Surfaces Resist Water Droplet Impacten_US
dc.typeArticleen_US
dc.identifier.citationVaranasi, Kripa K. et al. "Hierarchical Superhydrophobic Surfaces Resist Water Droplet Impact." in Technical Proceedings of the 2009 NSTI Nanotechnology Conference and Expo, May 3-7, 2009, George R. Brown Convention Center, Houston, Texas, U.S.A.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverVaranasi, Kripa K.
dc.contributor.mitauthorVaranasi, Kripa K.
dc.relation.journalTechnical Proceedings of the 2009 NSTI Nanotechnology Conference and Expo, NSTI Nanotech 2009en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsVaranasi, Kripa K.; Deng, Tao; Hsu, Ming; Bhate, Nitin
dc.identifier.orcidhttps://orcid.org/0000-0002-6846-152X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record