MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Direct Detection of Nitroxyl in Aqueous Solution using a Tripodal Copper(II) BODIPY Complex

Author(s)
Rosenthal, Joel; Lippard, Stephen J.
Thumbnail
DownloadRosenthal and Lippard JACS.pdf (745.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Nitric oxide (NO) mediates both physiological and pathological processes.1,2 In addition to cardiovascular signaling, NO has been invoked to play a neurochemical role in learning and memory, and it is a powerful necrotic agent wielded by macrophages of the immune system. Whereas considerable effort has been invested to develop metal-based3-5 and other6,7 probes for detecting nitric oxide, there has been significantly less progress in the synthesis of platforms capable of detecting other reactive nitrogen species (RNS).8 Of the nitrogen oxides relevant to biology, nitroxyl (HNO), the one electron reduced, protonated analog of nitric oxide,9 is among the least thoroughly investigated.10 Interest in nitroxyl has grown with the accumulation of evidence that HNO, which has a pKa of 11.4 and exists primarily in the protonated form under physiological conditions,9 displays important biological roles with potential pharmacological applications distinct from those of nitric oxide.11-13 For example, HNO reacts directly with thiols,14 is resistant to scavenging by superoxide,15 and can activate voltage-dependent K+ channels in mammalian vascular systems.16,17 Moreover, biochemical studies suggest that HNO can be formed directly from nitric oxide synthase under appropriate conditions10,18 and that NO and HNO may be able to interconvert in the presence of superoxide dismutase (SOD).19 Despite accumulating evidence of the biological importance of HNO, studies have been hampered by the lack of a biologically compatible probe for the molecule. Only recently have chemical systems capable of discerning HNO from NO been reported, but the constructs are not suitable for work with biological samples.
Date issued
2009-10
URI
http://hdl.handle.net/1721.1/64771
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society
Citation
Rosenthal, Joel, and Stephen J. Lippard. “Direct Detection of Nitroxyl in Aqueous Solution Using a Tripodal Copper(II) BODIPY Complex.” Journal of the American Chemical Society 132.16 (2010) : 5536-5537.
Version: Author's final manuscript
ISSN
0002-7863
1520-5126

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.