Show simple item record

dc.contributor.authorHendrickx, Julien
dc.contributor.authorOlshevsky, Alexander
dc.date.accessioned2011-07-25T17:55:41Z
dc.date.available2011-07-25T17:55:41Z
dc.date.issued2010-10
dc.date.submitted2010-07
dc.identifier.issn0895-4798
dc.identifier.issn1095-7162
dc.identifier.urihttp://hdl.handle.net/1721.1/64956
dc.description.abstractWe show that, for any rational p ∈ [1,∞) [p is an element of the set [1, infinity)] except p = 1, 2, unless P = NP, there is no polynomial time algorithm which approximates the matrix p-norm to arbitrary relative precision. We also show that, for any rational p ∈ [1,∞) [p is an element of the set [1, infinity)] including p = 1, 2, unless P = NP, there is no polynomialtime algorithm which approximates the ∞, p [infinity, p] mixed norm to some fixed relative precision.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant ECCS-0701623)en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/09076773xen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSIAMen_US
dc.titleMATRIX p-NORMS ARE NP-HARD TO APPROXIMATE IF p not equal to 1, 2, infinityen_US
dc.typeArticleen_US
dc.identifier.citationHendrickx, Julien M., and Alex Olshevsky. “Matrix $p$-Norms Are NP-Hard to Approximate If $p\neq1,2,\infty$.” SIAM Journal on Matrix Analysis and Applications 31.5 (2010) : 2802. © 2010 Society for Industrial and Applied Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.approverOlshevsky, Alexander
dc.contributor.mitauthorHendrickx, Julien
dc.contributor.mitauthorOlshevsky, Alexander
dc.relation.journalSIAM Journal on Matrix Analysis and Applicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHendrickx, Julien; Olshevsky, Alexen
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record