MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics

Author(s)
Lizana, L.; Ambjornsson, T.
Thumbnail
DownloadLizana-2009-Diffusion of finite-sized hard-core interacting particles in a one-dimensional box.pdf (285.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Δ diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function ρT(yT,t∣yT,0) that a tagged particle T (T=1,…,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N-particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T, we arrive at an exact expression for ρT(yT,t∣yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N, maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for ρT(yT,t∣yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time t«τcoll=1/(ϱ2D), where ϱ=N/L is the particle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t«τcoll but times smaller than the equilibrium time t«τeq=L2/D, we find a single-file regime where ρT(yT,t∣yT,0) is a Gaussian with a mean-square displacement scaling as t1/2; and (C) for times longer than the equilibrium time t«τeq, ρT(yT,t∣yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.
Date issued
2009-11
URI
http://hdl.handle.net/1721.1/65085
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Physical Review E
Publisher
American Physical Society
Citation
Lizana, L., and T. Ambjörnsson. “Diffusion of Finite-sized Hard-core Interacting Particles in a One-dimensional Box: Tagged Particle Dynamics.” Physical Review E 80.5 (2009) : 051103. © 2009 The American Physical Society
Version: Final published version
ISSN
1539-3755
1550-2376

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.