MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID

Author(s)
Hohaus, T.; Trimborn, D.; Kiendler-Scharr, A.; Gensch, I.; Laumer, W.; Kammer, B.; Andres, S.; Boudries, H.; Smith, Kenneth A.; Worsnop, D. R.; Jayne, John T.; ... Show more Show less
Thumbnail
DownloadHohaus-2010-A new aerosol collector for quasi on-line.pdf (5.657Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0
Metadata
Show full item record
Abstract
In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to understand the formation process, composition, and properties of aerosols and facilitates source identification and relative contributions from different types of sources to ambient aerosols in the atmosphere. However, current analytical methods are far from full speciation of organic aerosols and often require sampling times of up to one week. Offline methods are also subjected to artifacts during aerosol collection and storage. In the present work a new technique for quasi on-line compound specific measurements of organic aerosol particles was developed. The Aerosol Collection Module (ACM) focuses particles into a beam which is directed to a cooled sampling surface. The sampling takes place in a high vacuum environment where the gas phase from the sample volume is removed. After collection is completed volatile and semi-volatile compounds are evaporated from the collection surface through heating and transferred to a detector. For laboratory characterization the ACM was interfaced with a Gas Chromatograph Mass Spectrometer, Flame Ionization Detector system (GC/MS-FID), abbreviated as ACM GC-MS. The particle collection efficiency, gas phase transfer efficiency, and linearity of the ACM GC-MS were determined using laboratory generated octadecane aerosols. The ACM GC-MS is linear over the investigated mass range of 10 to 100 ng and a recovery rate of 100% was found for octadecane particles. The ACM GC-MS was applied to investigate secondary organic aerosol (SOA) formed from β-pinene oxidation. Nopinone, myrtanal, myrtenol, 1-hydroxynopinone, 3-oxonopinone, 3,7-dihydroxynopinone, and bicyclo[3,1,1]hept-3-ene-2-one were found as products in the SOA. The ACM GC-MS results are compared to quartz filter samples taken in parallel to the ACM GC-MS measurements. First measurements of ambient atmospheric aerosols are presented.
Date issued
2010-10
URI
http://hdl.handle.net/1721.1/65105
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Atmospheric Measurement Techniques
Publisher
Copernicus Publications on behalf of the European Geosciences Union
Citation
Hohaus, T. et al. “A New Aerosol Collector for Quasi On-line Analysis of Particulate Organic Matter: The Aerosol Collection Module (ACM) and First Applications with a GC/MS-FID.” Atmospheric Measurement Techniques 3.5 (2010) : 1423-1436.
Version: Final published version
ISSN
1867-1381
1867-8548

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.