MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysing spatio-temporal patterns of the global NO2-distribution [NO subscript 2 -distribution] retrieved from GOME satellite observations using a generalized additive model

Author(s)
Hayn, M.; Beirle, S.; Hamprecht, Fred A.; Menze, Bjoern Holger; Wagner, T.
Thumbnail
DownloadHayn-2009-Analysing spatio-temporal patterns of the global NO2-distribution retrieved from GOME satellite observations using a generalized additive model.pdf (4.163Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0
Metadata
Show full item record
Abstract
With the increasing availability of observational data from different sources at a global level, joint analysis of these data is becoming especially attractive. For such an analysis – oftentimes with little prior knowledge about local and global interactions between the different observational variables at hand – an exploratory, data-driven analysis of the data may be of particular relevance. In the present work we used generalized additive models (GAM) in an exemplary study of spatio-temporal patterns in the tropospheric NO2-distribution [NO subscript 2 -distribution] derived from GOME satellite observations (1996 to 2001) at global scale. We focused on identifying correlations between NO2 [NO subscript 2] and local wind fields, a quantity which is of particular interest in the analysis of spatio-temporal interactions. Formulating general functional, parametric relationships between the observed NO2 [NO subscript 2] distribution and local wind fields, however, is difficult – if not impossible. So, rather than following a model-based analysis testing the data for predefined hypotheses (assuming, for example, sinusoidal seasonal trends), we used a GAM with non-parametric model terms to learn this functional relationship between NO2 [NO subscript 2] and wind directly from the data. The NO2 [NO subscript 2] observations showed to be affected by wind-dominated processes over large areas. We estimated the extent of areas affected by specific NO2 [NO subscript 2] emission sources, and were able to highlight likely atmospheric transport "pathways". General temporal trends which were also part of our model – weekly, seasonal and linear changes – showed to be in good agreement with previous studies and alternative ways of analysing the time series. Overall, using a non-parametric model provided favorable means for a rapid inspection of this large spatio-temporal NO2 [NO subscript 2] data set, with less bias than parametric approaches, and allowing to visualize dynamical processes of the NO2 [NO subscript 2] distribution at a global scale.
Date issued
2009-09
URI
http://hdl.handle.net/1721.1/65186
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Atmospheric Chemistry and Physics
Publisher
European Geosciences Union / Copernicus
Citation
Hayn, M. et al. “Analysing Spatio-temporal Patterns of the Global NO2-distribution Retrieved from GOME Satellite Observations Using a Generalized Additive Model.” Atmospheric Chemistry and Physics 9.17 (2009) : 6459-6477. © Author(s) 2009
Version: Final published version
ISSN
1680-7324
1680-7316

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.