A simple combinatorial algorithm for submodular function minimization
Author(s)
Iwata, Satoru; Orlin, James B.
DownloadOrlin_A Simple.pdf (194.9Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) [O (n superscript 6 E O log nM)] time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, and EO is the time for function evaluation. The algorithm can be improved to run in O ((n4EO+n5)log nM) [O ((n superscript 4 EO + n superscript 5) log nM)] time. The strongly polynomial version of this faster algorithm runs in O((n5EO + n6) log n) [O ((n superscript 5 EO + n superscript 6) log n)] time for real valued general submodular functions. These are comparable to the best known running time bounds for submodular function minimization. The algorithm can also be implemented in strongly polynomial time using only additions, subtractions, comparisons, and the oracle calls for function evaluation. This is the first fully combinatorial submodular function minimization algorithm that does not rely on the scaling method.
Date issued
2009-01Department
Sloan School of ManagementJournal
ACM-SIAM Symposium on Discrete Algorithms (SODA)(20th, 2009)
Publisher
Society for Industrial and Applied Mathematics / Association for Computing Machinery
Citation
Iwata, Satoru and James B. Orlin. "A simple combinatorial algorithm for submodular function minimization" Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009)
Version: Author's final manuscript
ISSN
1071-9040