Measurement of the nonlinear elasticity of red blood cell membranes
Author(s)
Park, YongKeun; Best, Catherine A.; Kuriabova, Tatiana; Henle, Mark L.; Feld, Michael S.; Levine, Alex J.; Popescu, Gabriel; ... Show more Show less
DownloadPark-2011-Measurement of the n.pdf (386.5Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The membranes of human red blood cells (RBCs) are a composite of a fluid lipid bilayer and a triangular network of semiflexible filaments (spectrin). We perform cellular microrheology using the dynamic membrane fluctuations of the RBCs to extract the elastic moduli of this composite membrane. By applying known osmotic stresses, we measure the changes in the elastic constants under imposed strain and thereby determine the nonlinear elastic properties of the membrane. We find that the elastic nonlinearities of the shear modulus in tensed RBC membranes can be well understood in terms of a simple wormlike chain model. Our results show that the elasticity of the spectrin network can mostly account for the area compression modulus at physiological osmolality, suggesting that the lipid bilayer has significant excess area. As the cell swells, the elastic contribution from the now tensed lipid membrane becomes dominant.
Date issued
2011-05Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Spectroscopy LaboratoryJournal
Physical review E
Publisher
American Physical Society
Citation
Park, YongKeun et al. “Measurement of the Nonlinear Elasticity of Red Blood Cell Membranes.” Physical Review E 83.5 (2011) : n. pag. ©2011 American Physical Society
Version: Final published version
ISSN
1539-3755
1550-2376