dc.contributor.author | Reuter, Martin | |
dc.contributor.author | Mikkelsen, Tarjei Sigurd | |
dc.contributor.author | Sherbrooke, Evan C. | |
dc.contributor.author | Maekawa, Takashi | |
dc.contributor.author | Patrikalakis, Nicholas M. | |
dc.date.accessioned | 2011-08-30T19:27:06Z | |
dc.date.available | 2011-08-30T19:27:06Z | |
dc.date.issued | 2007-11 | |
dc.identifier.issn | 0178-2789 | |
dc.identifier.issn | 1432-2315 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/65558 | |
dc.description.abstract | We present a method for solving arbitrary systems of N nonlinear polynomials in n variables over an n-dimensional simplicial domain based on polynomial representation in the barycentric Bernstein basis and subdivision. The roots are approximated to arbitrary precision by iteratively constructing a series of smaller bounding simplices. We use geometric subdivision to isolate multiple roots within a simplex. An algorithm implementing this method in rounded interval arithmetic is described and analyzed. We find that when the total order of polynomials is close to the maximum order of each variable, an iteration of this solver algorithm is asymptotically more efficient than the corresponding step in a similar algorithm which relies on polynomial representation in the tensor product Bernstein basis. We also discuss various implementation issues and identify topics for further study. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (grant DMI-062933) | en_US |
dc.description.sponsorship | Alexander von Humboldt Foundation (fellowship) | en_US |
dc.language.iso | en_US | |
dc.publisher | Spring Berlin/Heidelberg | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00371-007-0184-x | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Reuter | en_US |
dc.title | Solving nonlinear polynomial systems in the barycentric Bernstein basis | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Reuter, Martin et al. “Solving Nonlinear Polynomial Systems in the Barycentric Bernstein Basis.” The Visual Computer 24.3 (2007) : 187-200. © 2007 Springer-Verlag | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.approver | Reuter, Martin | |
dc.contributor.mitauthor | Reuter, Martin | |
dc.contributor.mitauthor | Mikkelsen, Tarjei Sigurd | |
dc.contributor.mitauthor | Sherbrooke, Evan C. | |
dc.contributor.mitauthor | Patrikalakis, Nicholas M. | |
dc.relation.journal | Visual Computer | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Reuter, Martin; Mikkelsen, Tarjei S.; Sherbrooke, Evan C.; Maekawa, Takashi; Patrikalakis, Nicholas M. | en |
dspace.mitauthor.error | true | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |