Show simple item record

dc.contributor.authorReuter, Martin
dc.contributor.authorMikkelsen, Tarjei Sigurd
dc.contributor.authorSherbrooke, Evan C.
dc.contributor.authorMaekawa, Takashi
dc.contributor.authorPatrikalakis, Nicholas M.
dc.date.accessioned2011-08-30T19:27:06Z
dc.date.available2011-08-30T19:27:06Z
dc.date.issued2007-11
dc.identifier.issn0178-2789
dc.identifier.issn1432-2315
dc.identifier.urihttp://hdl.handle.net/1721.1/65558
dc.description.abstractWe present a method for solving arbitrary systems of N nonlinear polynomials in n variables over an n-dimensional simplicial domain based on polynomial representation in the barycentric Bernstein basis and subdivision. The roots are approximated to arbitrary precision by iteratively constructing a series of smaller bounding simplices. We use geometric subdivision to isolate multiple roots within a simplex. An algorithm implementing this method in rounded interval arithmetic is described and analyzed. We find that when the total order of polynomials is close to the maximum order of each variable, an iteration of this solver algorithm is asymptotically more efficient than the corresponding step in a similar algorithm which relies on polynomial representation in the tensor product Bernstein basis. We also discuss various implementation issues and identify topics for further study.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMI-062933)en_US
dc.description.sponsorshipAlexander von Humboldt Foundation (fellowship)en_US
dc.language.isoen_US
dc.publisherSpring Berlin/Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00371-007-0184-xen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceReuteren_US
dc.titleSolving nonlinear polynomial systems in the barycentric Bernstein basisen_US
dc.typeArticleen_US
dc.identifier.citationReuter, Martin et al. “Solving Nonlinear Polynomial Systems in the Barycentric Bernstein Basis.” The Visual Computer 24.3 (2007) : 187-200. © 2007 Springer-Verlagen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverReuter, Martin
dc.contributor.mitauthorReuter, Martin
dc.contributor.mitauthorMikkelsen, Tarjei Sigurd
dc.contributor.mitauthorSherbrooke, Evan C.
dc.contributor.mitauthorPatrikalakis, Nicholas M.
dc.relation.journalVisual Computeren_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsReuter, Martin; Mikkelsen, Tarjei S.; Sherbrooke, Evan C.; Maekawa, Takashi; Patrikalakis, Nicholas M.en
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record