MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Z2 [Z subscript 2] spin liquids in the S=1/2 Heisenberg model on the kagome lattice: A projective symmetry-group study of Schwinger fermion mean-field states

Author(s)
Lu, Yuan-Ming; Ran, Ying; Lee, Patrick A.
Thumbnail
DownloadLu-2011-Z(2) spin liquids in.pdf (428.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Due to strong geometric frustration and quantum fluctuation, the S = 1/2 quantum Heisenberg antiferromagnet on the kagome lattice has long been considered as an ideal platform to realize a spin liquid (SL), a phase exhibiting fractionalized excitations without any symmetry breaking. A recent numerical study (Yan et al., e-print arXiv:1011.6114) of the Heisenberg S = 1/2, kagome lattice model (HKLM) shows, in contrast to earlier results, that the ground state is a singlet-gapped SL with signatures of Z2 [Z subscript 2] topological order. Motivated by this numerical discovery, we use the projective symmetry group to classify all 20 possible Schwinger fermion mean-field states of Z2 [Z subscript 2] SLs on the kagome lattice. Among them we found only one gapped Z2 [Z subscript 2] SL (which we call the Z2[0,π]β [Z subscript 2 [0,pi] Beta] state) in the neighborhood of the U(1) Dirac SL state. Since its parent state, i.e., the U(1) Dirac SL, was found [Ran et al., Phys. Rev. Lett. 98, 117205 (2007)] to be the lowest among many other candidate U(1) SLs, including the uniform resonating-valence-bond states, we propose this Z2[0,π]β [Z subscript 2 [0,pi] Beta] state to be the numerically discovered SL ground state of the HKLM.
Date issued
2011-06
URI
http://hdl.handle.net/1721.1/65629
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical review B
Publisher
American Physical Society
Citation
Lu, Yuan-Ming, Ying Ran, and Patrick Lee. “Z_{2} Spin Liquids in the S=1/2 Heisenberg Model on the Kagome Lattice: A Projective Symmetry-group Study of Schwinger Fermion Mean-field States.” Physical Review B 83.22 (2011) : n. pag. ©2011 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.