Show simple item record

dc.contributor.authorLermusiaux, Pierre F. J.
dc.contributor.authorXu, Jinshan
dc.contributor.authorChen, Chi-Fang
dc.contributor.authorJan, Sen
dc.contributor.authorChiu, Linus Y.
dc.contributor.authorYang, Yiing-Jang
dc.date.accessioned2011-09-12T19:44:08Z
dc.date.available2011-09-12T19:44:08Z
dc.date.issued2010-10
dc.date.submitted2010-08
dc.identifier.issn0364-9059
dc.identifier.otherINSPEC Accession Number: 11673991
dc.identifier.urihttp://hdl.handle.net/1721.1/65649
dc.description.abstractIn this paper, we quantify the dynamical causes and uncertainties of striking differences in acoustic transmission data collected on the shelf and shelfbreak in the northeastern Taiwan region within the context of the 2008 Quantifying, Predicting, and Exploiting Uncertainty (QPE 2008) pilot experiment. To do so, we employ our coupled oceanographic (4-D) and acoustic (Nx2-D) modeling systems with ocean data assimilation and a best-fit depth-dependent geoacoustic model. Predictions are compared to the measured acoustic data, showing skill. Using an ensemble approach, we study the sensitivity of our results to uncertainties in several factors, including geoacoustic parameters, bottom layer thickness, bathymetry, and ocean conditions. We find that the lack of signal received on the shelfbreak is due to a 20-dB increase in transmission loss (TL) caused by bottom trapping of sound energy during up-slope transmissions over the complex and deeper bathymetry. Sensitivity studies on sediment properties show larger but isotropic TL variations on the shelf and smaller but more anisotropic TL variations over the shelfbreak. Sediment sound-speed uncertainties affect the shape of the probability density functions of the TLs more than uncertainties in sediment densities and attenuations. Diverse thicknesses of sediments lead to only limited effects on the TL. The small bathymetric data uncertainty is modeled and also leads to small TL variations. We discover that the initial transport conditions in the Taiwan Strait can affect acoustic transmissions downstream more than 100 km away, especially above the shelfbreak. Simulations also reveal internal tides and we quantify their spatial and temporal effects on the ocean and acoustic fields. One type of predicted waves are semidiurnal shelfbreak internal tides propagating up-slope with wavelengths around 40–80 km, horizontal phase speeds of 0.5–1 m/s, and vertical peak-to-peak displacements of isotherms of 20–60 m. These waves lead to variations of broadband TL estimates over 5–6-km range that are more isotropic and on bearing average larger (up to 5–8-dB amplitudes) on the shelf than on the complex shelfbreak where the TL varies rapidly with bearing angles.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronic Engineers / IEEE Oceanic Engineering Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/JOE.2010.2068611en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleCoupled Ocean-Acoustic Prediction of Transmission Loss in a Continental Shelfbreak Region: Predictive Skill, Uncertainty Quantification and Dynamical Sensitivitiesen_US
dc.typeArticleen_US
dc.identifier.citationLermusiaux, P.F.J. et al. “Coupled Ocean–Acoustic Prediction of Transmission Loss in a Continental Shelfbreak Region: Predictive Skill, Uncertainty Quantification, and Dynamical Sensitivities.” Oceanic Engineering, IEEE Journal Of 35.4 (2010) : 895-916. © 2010 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverLermusiaux, Pierre F. J.
dc.contributor.mitauthorLermusiaux, Pierre F. J.
dc.contributor.mitauthorXu, Jinshan
dc.relation.journalIEEE journal of oceanic engineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLermusiaux, Pierre F. J.; Xu, Jinshan; Chen, Chi-Fang; Jan, Sen; Chiu, Linus Y.; Yang, Yiing-Jangen
dc.identifier.orcidhttps://orcid.org/0000-0002-1869-3883
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record