MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanism of Void Nucleation and Growth in bcc Fe: Atomistic Simulations Experimental Time Scales

Author(s)
Fan, Yue; Kushima, Akihiro; Yip, Sidney; Yildiz, Bilge
Thumbnail
DownloadFan-2011-Mechanism of Void Nu.pdf (947.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Evolution of small-vacancy clusters in bcc Fe is simulated using a multiscale approach coupling an atomistic activation-relaxation method for sampling transition-state pathways with environment-dependent reaction coordinate calculations and a kinetic Monte Carlo simulation to reach time scales on the order of ~10[superscript 4]  s. Under vacancy-supersaturated condition, di- and trivacancy clusters form and grow by coalescence (Ostwald ripening). For cluster size greater than four we find a transition temperature of 150 °C for accelerated cluster growth, as observed in positron annihilation spectroscopy experiments. Implications for the mechanism of stage-IV radiation-damage-recovery kinetics are discussed.
Date issued
2011-03
URI
http://hdl.handle.net/1721.1/65864
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Fan, Yue et al. “Mechanism of Void Nucleation and Growth in Bcc Fe: Atomistic Simulations at Experimental Time Scales.” Physical Review Letters 106.12 (2011) © 2011 American Physical Society
Version: Final published version
ISSN
0031-9007

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.