Show simple item record

dc.contributor.authorAoude, Georges
dc.contributor.authorDesaraju, Vishnu Rajeswar
dc.contributor.authorStephens, Lauren H.
dc.contributor.authorHow, Jonathan P.
dc.date.accessioned2011-09-21T13:47:39Z
dc.date.available2011-09-21T13:47:39Z
dc.date.issued2011-06
dc.identifier.isbn978-1-4577-0890-9
dc.identifier.issn1931-0587
dc.identifier.otherINSPEC Accession Number: 12095304
dc.identifier.urihttp://hdl.handle.net/1721.1/65892
dc.description.abstractThe ability to classify driver behavior lays the foundation for more advanced driver assistance systems. Improving safety at intersections has also been identified as high priority due to the large number of intersection related fatalities. This paper focuses on developing algorithms for estimating driver behavior at road intersections. It introduces two classes of algorithms that can classify drivers as compliant or violating. They are based on 1) Support Vector Machines (SVM) and 2) Hidden Markov Models (HMM), two very popular machine learning approaches that have been used extensively for classification in multiple disciplines. The algorithms are successfully validated using naturalistic intersection data collected in Christiansburg, VA, through the US Department of Transportation Cooperative Intersection Collision Avoidance System for Violations (CICAS-V) initiative.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IVS.2011.5940569en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleBehavior Classification Algorithms at Intersectionsen_US
dc.typeArticleen_US
dc.identifier.citationAoude, Georges S. et al. “Behavior classification algorithms at intersections and validation using naturalistic data.” IEEE, 2011. 601-606.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverHow, Jonathan P,
dc.contributor.mitauthorHow, Jonathan P.
dc.contributor.mitauthorAoude, Georges
dc.contributor.mitauthorDesaraju, Vishnu Rajeswar
dc.contributor.mitauthorStephens, Lauren H.
dc.relation.journalProceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsAoude, Georges S.; Desaraju, Vishnu R.; Stephens, Lauren H.; How, Jonathan P.en
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record