MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linear stability analysis of capillary instabilities for concentric cylindrical shells

Author(s)
Liang, Xiangdong; Deng, D. S.; Nave, Jean-Christophe; Johnson, Steven G.
Thumbnail
DownloadJohnson_Linear Stability.pdf (2.183Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of $N$ fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier–Stokes problem. Generalizing previous work by Tomotika ($N= 2$), Stone & Brenner ($N= 3$, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalized eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the $N= 3$ case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to $N= 2$ problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full three-dimensional Stokes-flow simulations. Many $N\gt 3$ cases remain to be explored, and as a first step we discuss two illustrative $N\ensuremath{\rightarrow} \infty $ cases, an alternating-layer structure and a geometry with a continuously varying viscosity.
Date issued
2011-08
URI
http://hdl.handle.net/1721.1/65905
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Fluid Mechanics
Publisher
Cambridge University Press
Citation
Liang, X. et al. “Linear Stability Analysis of Capillary Instabilities for Concentric Cylindrical Shells.” Journal of Fluid Mechanics 683 (2011) : 235-262.
Version: Author's final manuscript
ISSN
0022-1120
1469-7645

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.