Show simple item record

dc.contributor.authorChoi, Myung Jin
dc.contributor.authorChandrasekaran, Venkat
dc.contributor.authorWillsky, Alan S.
dc.date.accessioned2011-09-21T17:51:36Z
dc.date.available2011-09-21T17:51:36Z
dc.date.issued2009-06
dc.identifier.isbn9781605585161
dc.identifier.isbn1605585165
dc.identifier.urihttp://hdl.handle.net/1721.1/65910
dc.description.abstractWe consider Gaussian multiresolution (MR) models in which coarser, hidden variables serve to capture statistical dependencies among the finest scale variables. Tree-structured MR models have limited modeling capabilities, as variables at one scale are forced to be uncorrelated with each other conditioned on other scales. We propose a new class of Gaussian MR models that capture the residual correlations within each scale using sparse covariance structure. Our goal is to learn a tree-structured graphical model connecting variables across different scales, while at the same time learning sparse structure for the conditional covariance within each scale conditioned on other scales. This model leads to an efficient, new inference algorithm that is similar to multipole methods in computational physics.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA9550-08-1-1080)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-06-1-0324)en_US
dc.description.sponsorshipShell International Exploration and Production B.V.en_US
dc.description.sponsorshipSamsung Scholarship Foundationen_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery / ACM Digital Libraryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/1553374.1553397en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceChoi, MyungJeeen_US
dc.titleExploiting sparse markov and covariance structure in multiresolution modelsen_US
dc.typeArticleen_US
dc.identifier.citationChoi, Myung Jin, Venkat Chandrasekaran, and Alan S. Willsky. “Exploiting Sparse Markov and Covariance Structure in Multiresolution Models.” Proceedings of the 26th Annual International Conference on Machine Learning - ICML ’09. Montreal, Quebec, Canada, 2009. 1-8. Copyright 2009 by the author(s)/owner(s).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.approverWillsky, Alan S.
dc.contributor.mitauthorChoi, Myung Jin
dc.contributor.mitauthorChandrasekaran, Venkat
dc.contributor.mitauthorWillsky, Alan S.
dc.relation.journalInternational Conference on Machine Learning (ICML) 2009 proceedingsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsChoi, Myung Jin; Chandrasekaran, Venkat; Willsky, Alan S.en
dc.identifier.orcidhttps://orcid.org/0000-0003-0149-5888
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record