Ab initio investigation of high multiplicity Rþ—Rþ [sigma superscript + - sigma superscript +] optical transitions in the spectra of CN and isoelectronic species
Author(s)
Kulik, Heather Janine; Steeves, Adam H.; Field, Robert W.
DownloadField_cn_jms_bbl_rev copy.pdf (589.6Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Based on high-level ab initio calculations, we predict the existence of a strong 4Σ+–4Σ+ [superscript 4 sigma superscript + - superscript 4 sigma superscript +] optical transition (dav=1.6 D) [(d subscript av = 1.6 D)] near 328 nm (T00 = 30460
cm-1) [(T subscript 00 = 30460 cm superscript -1)], analogous to the B 2Σ+ - X 2Σ+ [B superscript 2 sigma superscript + - X superscript 2 sigma superscript +] violet system, (dav=1.7 D) [(d subscript av = 2.2 D)] in the near-ultraviolet spectrum of CN. The lower state of the predicted transition is the lowest-lying state of quartet multiplicity and has been observed previously through its perturbations of the B state. The predicted transition will enable determination of the equilibrium properties of the metastable lowest quartet state of CN. The lowest energy metastable sextet state of CN is also calculated to be quasi-bound (re=1.76 A, we = 365 cm-1) [(r subscript e = 1.76 angstrom, omega subscript e = 365 cm superscript -1)], and a 6Σ+–6Σ+ [superscript 6 sigma superscript + - superscript 6 sigma superscript +] transition, analogous to those for the doublet and quartet multiplicities, is predicted (dav=2.2 D) [(d subscript av = 2.2 D)]. Investigation of the isoelectronic BO, C-2 [C subscript 2 superscript -], and N+2 [N subscript 2 superscript +] molecules reveals that differences in 2s22px [2s superscript 2 2p superscript x] and 2s12px+1 [2s superscript 1 2p superscript x+1] atomic energies play the key role in determining the magnitude of the 5σ(2p)←4σ(2s)-derived [5 sigma (2p)← 4 sigma (2s)-derived] Σ+–Σ+ [sigma superscript + - sigma superscript +] transition energies for the different multiplicities. Furthermore, the strong stabilization of 2s22px [2s superscript 2 2p superscript x] character with respect to 2s12px+1 [2s superscript 1 2p superscript x+1] in BO and N+2 [N subscript 2 superscript +] leads to strongly bound lowest 6Σ+ [superscript 6 sigma superscript +] states with binding energies as high as 2.0 eV. We believe that these newly predicted sextet states could be identified through their perturbations of quartet states of the relevant molecules.
Date issued
2009-08Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Spectroscopy LaboratoryJournal
Journal of Molecular Spectroscopy
Publisher
Elsevier ScienceDirect
Citation
Kulik, Heather J., Adam H. Steeves, and Robert W. Field. “Ab Initio Investigation of High Multiplicity Σ+–Σ+Σ+–Σ+ Optical Transitions in the Spectra of CN and Isoelectronic Species.” Journal of Molecular Spectroscopy 258.1-2 (2009) : 6-12. Copyright © 2009, Elsevier
Version: Author's final manuscript
ISSN
0022-2852