MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiwaveguide implantable probe for light delivery to sets of distributed brain targets

Author(s)
Zorzos, Anthony Nicholas; Boyden, Edward Stuart; Fonstad, Clifton G., Jr.
Thumbnail
DownloadBoyden_Multiwaveguide implantable.pdf (342.3Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Optical fibers are commonly inserted into living tissues such as the brain in order to deliver light to deep targets for neuroscientific and neuroengineering applications such as optogenetics, in which light is used to activate or silence neurons expressing specific photosensitive proteins. However, an optical fiber is limited to delivering light to a single target within the three-dimensional structure of the brain. We here demonstrate a multiwaveguide probe capable of independently delivering light to multiple targets along the probe axis, thus enabling versatile optical control of sets of distributed brain targets. The 1.45-cm-long probe is microfabricated in the form of a 360-μm-wide array of 12 parallel silicon oxynitride (SiON) multimode waveguides clad with SiO2 and coated with aluminum; probes of custom dimensions are easily created as well. The waveguide array accepts light from a set of sources at the input end and guides the light down each waveguide to an aluminum corner mirror that efficiently deflects light away from the probe axis. Light losses at each stage are small (input coupling loss, 0.4±0.3dB; bend loss, negligible; propagation loss, 3.1±1dB/cm using the outscattering method and 3.2±0.4dB/cm using the cutback method; corner mirror loss, 1.5±0.4dB); a waveguide coupled, for example, to a 5mW source will deliver over 1.5mW to a target at a depth of 1cm.
Date issued
2010-12
URI
http://hdl.handle.net/1721.1/66091
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Media Laboratory; Massachusetts Institute of Technology. Microsystems Technology Laboratories; McGovern Institute for Brain Research at MIT
Journal
Optics Letters
Publisher
Optical Society of America
Citation
Zorzos, Anthony N., Edward S. Boyden, and Clifton G. Fonstad. “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets.” Optics Letters 35 (2010): 4133.© 2010 Optical Society of America.
Version: Final published version
ISSN
0146-9592

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.