MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity

Author(s)
Kim, Sanggyun; Putrino, David; Ghosh, Soumya; Brown, Emery N.
Thumbnail
DownloadKim-2011-A Granger Causality.pdf (868.6Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.5/
Metadata
Show full item record
Abstract
The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron’s spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.
Date issued
2011-03
URI
http://hdl.handle.net/1721.1/66108
Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
PLoS Computational Biology
Publisher
Public Library of Science
Citation
Kim, Sanggyun et al. “A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity.” Ed. Karl J. Friston. PLoS Computational Biology 7 (3) (2011): e1001110. © 2011 Kim et al.
Version: Final published version
ISSN
1553-7358
1553-734X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.