Show simple item record

dc.contributor.authorNaegle, Kristen Marie
dc.contributor.authorWhite, Forest M.
dc.contributor.authorWelsch, Roy E
dc.contributor.authorYaffe, Michael B
dc.contributor.authorLauffenburger, Douglas A
dc.date.accessioned2011-10-03T16:05:12Z
dc.date.available2011-10-03T16:05:12Z
dc.date.issued2011-07
dc.date.submitted2011-02
dc.identifier.issn1553-7358
dc.identifier.issn1553-734X
dc.identifier.urihttp://hdl.handle.net/1721.1/66157
dc.description.abstractAdvances in proteomic technologies continue to substantially accelerate capability for generating experimental data on protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions. However, little is known about the function of many of these protein modifications, or the enzymes responsible for modifying them. To address this challenge, we have developed an approach that enhances the power of clustering techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new computational framework for applying clustering to biological data in order to overcome the typical dependence on specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering analysis methodology (‘MCAM’) employs an array of diverse data transformations, distance metrics, set sizes, and clustering algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis of proteomic data which may help increase the current understanding of molecular networks in a variety of biological problems.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH-U54-CA112967 )en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH-R01-CA096504)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pcbi.1002119en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/en_US
dc.sourcePLoSen_US
dc.titleMCAM: Multiple Clustering Analysis Methodology for Deriving Hypotheses and Insights from High-Throughput Proteomic Datasetsen_US
dc.typeArticleen_US
dc.identifier.citationNaegle, Kristen M. et al. “MCAM: Multiple Clustering Analysis Methodology for Deriving Hypotheses and Insights from High-Throughput Proteomic Datasets.” Ed. Jason A. Papin. PLoS Computational Biology 7 (2011): e1002119.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.approverLauffenburger, Douglas A.
dc.contributor.mitauthorNaegle, Kristen Marie
dc.contributor.mitauthorWelsch, Roy E.
dc.contributor.mitauthorYaffe, Michael B.
dc.contributor.mitauthorWhite, Forest M.
dc.contributor.mitauthorLauffenburger, Douglas A.
dc.relation.journalPLoS Computational Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNaegle, Kristen M.; Welsch, Roy E.; Yaffe, Michael B.; White, Forest M.; Lauffenburger, Douglas A.en
dc.identifier.orcidhttps://orcid.org/0000-0002-1545-1651
dc.identifier.orcidhttps://orcid.org/0000-0002-9038-1622
dc.identifier.orcidhttps://orcid.org/0000-0002-9547-3251
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record