MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Degradation Mechanism in La0.8Sr0.2CoO3 [La subscript 0.8 Sr subscript 0.2 CoO subscript 3] as Contact Layer on the Solid Oxide Electrolysis Cell Anode

Author(s)
Sharma, Vivek Inder; Yildiz, Bilge
Thumbnail
DownloadYildiz_DegradationMechanism.pdf (928.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Detailed chemical and structural analyses are presented for the degradation mechanism of La0.8Sr0.2CoO3 [La subscript 0.8 Sr subscript 0.2 CoO subscript 3]] (LSC) as the contact layer of solid oxide electrolysis cell (SOEC) anodes. SOEC stack cells, which were operated in the presence of Cr-containing interconnects, and reference half-cells, which were tested with Pt interconnects, were investigated. The as-prepared surface chemistry of LSC showed a spatially uniform A-site (La and Sr) enrichment. Undesirable secondary phases of Cr2O3 [Cr subscript 2 O subscript 3], LaCrO3 [LaCrO subscript 3], La2CrO6 [La subscript 2 CrO subscript 6], and Co3O4 [Co subscript 3 O subscript 4] were identified in the contact layer of the SOEC stack cells, which had significantly reduced electrochemical performance after long-term testing. Auger electron spectroscopy and analytical transmission electron microscopy showed the presence of Cr throughout the layer cross section on the surface and in the bulk, respectively, with significant variations in the local chemistry at the micro- to nanoscale. Particularly, a long-range transport of Sr and Co cations out of the LSC phase to the top of the contact layer was evident. However, when tested with electrolytic potential and current without a Cr environment, the LSC contact layer composition remained stable. The dissociation of the LSC in the SOEC stack cells can be, most probably, driven by the La–Cr–O related thermodynamics under the electrolytic potential and oxygen pressure at the anode.
Date issued
2010-02
URI
http://hdl.handle.net/1721.1/66223
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Laboratory for Electrochemical Interfaces
Journal
Journal of the Electrochemical Society
Publisher
Electrochemical Society
Citation
Sharma, Vivek Inder, and Bilge Yildiz. “Degradation Mechanism in La[sub 0.8]Sr[sub 0.2]CoO[sub 3] as Contact Layer on the Solid Oxide Electrolysis Cell Anode.” Journal of The Electrochemical Society 157, 3 (2010): B441. ©2010 The Electrochemical Society
Version: Final published version
ISSN
0013-4651

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.