MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fundamental Limits of Wideband Localization - Part I: A General Framework

Author(s)
Shen, Yuan; Win, Moe Z.
Thumbnail
DownloadShen-2010-Fundamental Limits I.pdf (1.066Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The availability of position information is of great importance in many commercial, public safety, and military applications. The coming years will see the emergence of location-aware networks with submeter accuracy, relying on accurate range measurements provided by wide bandwidth transmissions. In this two-part paper, we determine the fundamental limits of localization accuracy of wideband wireless networks in harsh multipath environments. We first develop a general framework to characterize the localization accuracy of a given node here and then extend our analysis to cooperative location-aware networks in Part II. In this paper, we characterize localization accuracy in terms of a performance measure called the squared position error bound (SPEB), and introduce the notion of equivalent Fisher information (EFI) to derive the SPEB in a succinct expression. This methodology provides insights into the essence of the localization problem by unifying localization information from individual anchors and that from a priori knowledge of the agent's position in a canonical form. Our analysis begins with the received waveforms themselves rather than utilizing only the signal metrics extracted from these waveforms, such as time-of-arrival and received signal strength. Hence, our framework exploits all the information inherent in the received waveforms, and the resulting SPEB serves as a fundamental limit of localization accuracy.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/66246
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers
Citation
Shen, Yuan, and Moe Z. Win. “Fundamental Limits of Wideband Localization Part I: A General Framework.” IEEE Transactions on Information Theory 56.10 (2010) : 4956-4980. © Copyright 2011 IEEE
Version: Final published version
ISSN
0018-9448

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.