MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Space-Time Codes for Wireless Optical Communications

Author(s)
Haas, Shane M.; Shapiro, Jeffrey H.; Tarokh, Vahid
Thumbnail
Download1687-6180-2002-478950.pdf (845.8Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
A space-time channel coding technique is presented for overcoming turbulence-induced fading in an atmospheric optical heterodyne communication system that uses multiple transmit and receive apertures. In particular, a design criterion for minimizing the pairwise probability of codeword error in a space-time code (STC) is developed from a central limit theorem approximation. This design criterion maximizes the mean-to-standard-deviation ratio of the received energy difference between codewords. It leads to STCs that are a subset of the previously reported STCs for Rayleigh channels, namely those created from orthogonal designs. This approach also extends to other fading channels with independent, zero-mean path gains. Consequently, for large numbers of transmit and receive antennas, STCs created from orthogonal designs minimize the pairwise codeword error probability for this larger class of fading channels.
Date issued
2002-03
URI
http://hdl.handle.net/1721.1/66286
Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
EURASIP Journal on Applied Signal Processing
Publisher
Hindawi Pub. Corp.
Citation
Haas, Shane M., Jeffrey H. Shapiro, Vahid Tarokh. "Space-Time Codes for Wireless Optical Communications." EURASIP Journal on Advances in Signal Processing. 2002 Mar 18;2002(3):478950.
Version: Author's final manuscript
ISSN
1687-0433
1110-8657

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.