MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning bayesian network structure using lp relaxations

Author(s)
Jaakkola, Tommi S.; Sontag, David Alexander; Globerson, Amir; Meila, Marina
Thumbnail
DownloadJaakkola_Learning bayesian.pdf (308.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We propose to solve the combinatorial problem of finding the highest scoring Bayesian network structure from data. This structure learning problem can be viewed as an inference problem where the variables specify the choice of parents for each node in the graph. The key combinatorial difficulty arises from the global constraint that the graph structure has to be acyclic. We cast the structure learning problem as a linear program over the polytope defined by valid acyclic structures. In relaxing this problem, we maintain an outer bound approximation to the polytope and iteratively tighten it by searching over a new class of valid constraints. If an integral solution is found, it is guaranteed to be the optimal Bayesian network. When the relaxation is not tight, the fast dual algorithms we develop remain useful in combination with a branch and bound method. Empirical results suggest that the method is competitive or faster than alternative exact methods based on dynamic programming.
Date issued
2010-05
URI
http://hdl.handle.net/1721.1/66317
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, (AISTATS) 2010
Publisher
Society for Artificial Intelligence and Statistics
Citation
Jaakkola, Tommi, David Sontag, Amir Globerson, and Marina Meila. "Learning Bayesian Network Structure using LP Relaxations." Proceedings of the 13th International Conference on Arti ficial Intelligence and Statistics (AISTATS) 2010, May 13-15, Chia Laguna Resort, Sardinia, Italy.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.