Show simple item record

dc.contributor.authorKroll, Jesse
dc.contributor.authorHao, L. Q.
dc.contributor.authorRomakkaniemi, S.
dc.contributor.authorYli-Pirilä, P.
dc.contributor.authorJoutsensaari, J.
dc.contributor.authorKortelainen, A.
dc.contributor.authorMiettinen, P.
dc.contributor.authorVaattovaara, P.
dc.contributor.authorTiitta, P.
dc.contributor.authorJaatinen, A.
dc.contributor.authorKajos, M. K.
dc.contributor.authorHolopainen, J. K.
dc.contributor.authorHeijari, J.
dc.contributor.authorRinne, J.
dc.contributor.authorKulmala, M.
dc.contributor.authorWorsnop, D. R.
dc.contributor.authorSmith, J. N.
dc.contributor.authorLaaksonen, A.
dc.date.accessioned2011-10-20T16:55:11Z
dc.date.available2011-10-20T16:55:11Z
dc.date.issued2011-02
dc.date.submitted2011-02
dc.identifier.issn1680-7324
dc.identifier.issn1680-7316
dc.identifier.urihttp://hdl.handle.net/1721.1/66522
dc.description.abstractBiogenic volatile organic compounds (VOCs) are a significant source of global secondary organic aerosol (SOA); however, quantifying their aerosol forming potential remains a challenge. This study presents smog chamber laboratory work, focusing on SOA formation via oxidation of the emissions of two dominant tree species from boreal forest area, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies), by hydroxyl radical (OH) and ozone (O[subscript 3]). Oxidation of α-pinene was also studied as a reference system. Tetramethylethylene (TME) and 2-butanol were added to control OH and O[subscript 3] levels, thereby allowing SOA formation events to be categorized as resulting from either OH-dominated or O[subscript 3]-initiated chemistry. SOA mass yields from α-pinene are consistent with previous studies while the yields from the real plant emissions are generally lower than that from α-pinene, varying from 1.9% at an aerosol mass loading of 0.69 μg m[superscript −3] to 17.7% at 26.0 μg m[superscript −3]. Mass yields from oxidation of real plant emissions are subject to the interactive effects of the molecular structures of plant emissions and their reaction chemistry with OH and O[subscript 3], which lead to variations in condensable product volatility. SOA formation can be reproduced with a two-product gas-phase partitioning absorption model in spite of differences in the source of oxidant species and product volatility in the real plant emission experiments. Condensable products from OH-dominated chemistry showed a higher volatility than those from O[subscript 3]-initiated systems during aerosol growth stage. Particulate phase products became less volatile via aging process which continued after input gas-phase oxidants had been completely consumed.en_US
dc.description.sponsorshipAcademy of Finland Centre of Excellence program (project no. 1118615)en_US
dc.description.sponsorshipAcademy of Finland (decision no. 110763)en_US
dc.description.sponsorshipAcademy of Finland (decision no. 131019)en_US
dc.description.sponsorshipAcademy of Finland (decision no. 218115)en_US
dc.description.sponsorshipAcademy of Finland (decision no. 111543)en_US
dc.description.sponsorshipAcademy of Finland (decision no. 123466)en_US
dc.description.sponsorshipSixth Framework Programme (European Commission)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Biological and Environmental Researchen_US
dc.description.sponsorshipSaastamoinen Foundationen_US
dc.description.sponsorshipUnited States. Dept. of Energy (grant DE-FG-02-05ER63997)en_US
dc.language.isoen_US
dc.publisherEuropean Geosciences Unionen_US
dc.relation.isversionofhttp://dx.doi.org/10.5194/acp-11-1367-2011en_US
dc.rightsCreative Commons Attribution 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceCopernicusen_US
dc.titleMass yields of secondary organic aerosols from the oxidation of alpha-pinene and real plant emissionsen_US
dc.typeArticleen_US
dc.identifier.citationHao, L. Q. et al. “Mass yields of secondary organic aerosols from the oxidation of α-pinene and real plant emissions.” Atmospheric Chemistry and Physics 11 (2011): 1367-1378. Web. 20 Oct. 2011.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.approverKroll, Jesse
dc.contributor.mitauthorKroll, Jesse
dc.relation.journalAtmospheric Chemistry and Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHao, L. Q.; Romakkaniemi, S.; Yli-Pirilä, P.; Joutsensaari, J.; Kortelainen, A.; Kroll, J. H.; Miettinen, P.; Vaattovaara, P.; Tiitta, P.; Jaatinen, A.; Kajos, M. K.; Holopainen, J. K.; Heijari, J.; Rinne, J.; Kulmala, M.; Worsnop, D. R.; Smith, J. N.; Laaksonen, A.en
dc.identifier.orcidhttps://orcid.org/0000-0002-6275-521X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record