Show simple item record

dc.contributor.authorMolina, Luisa Tan
dc.contributor.authorLi, Guohui
dc.contributor.authorLei, Wenfang
dc.contributor.authorZavala, M.
dc.contributor.authorTsimpidi, A. P.
dc.contributor.authorKarydis, V. A.
dc.contributor.authorPandis, S. N.
dc.contributor.authorCanagaratna, M. R.
dc.date.accessioned2011-10-20T17:41:23Z
dc.date.available2011-10-20T17:41:23Z
dc.date.issued2011-04
dc.date.submitted2011-04
dc.identifier.issn1680-7324
dc.identifier.issn1680-7316
dc.identifier.urihttp://hdl.handle.net/1721.1/66524
dc.description.abstractOrganic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1) a traditional 2-product secondary organic aerosol (SOA) model with non-volatile primary organic aerosols (POA); (2) a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA (Mexico City Metropolitan Area) 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS) observations analyzed using the Positive Matrix Factorization (PMF) technique at an urban background site (T0) and a suburban background site (T1) in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the suburban area. In the non-traditional SOA model, the aging process of primary organic components considerably decreases the OH levels in simulations and further impacts the SOA formation. If the aging process in the non-traditional model does not have feedback on the OH in the gas-phase chemistry, the SOA production is enhanced by more than 10% compared to the simulations with the OH feedback during daytime, and the gap between the simulations and observations in the urban area is around 3 μg m[superscript −3] or 20% on average during late morning and early afternoon, within the uncertainty from the AMS measurements and PMF analysis. In addition, glyoxal and methylglyoxal can contribute up to approximately 10% of the observed SOA mass in the urban area and 4% in the suburban area. Including the non-OH feedback and the contribution of glyoxal and methylglyoxal, the non-traditional SOA model can explain up to 83% of the observed SOA in the urban area, and the underestimation during late morning and early afternoon is reduced to 0.9 μg m[superscript −3] or 6% on average. Considering the uncertainties from measurements, emissions, meteorological conditions, aging of semi-volatile and intermediate volatile organic compounds, and contributions from background transport, the non-traditional SOA model is capable of closing the gap in SOA mass between measurements and models.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Atmospheric Chemistry Program (ATM-0528227)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Atmospheric Chemistry Program (ATM-0810931)en_US
dc.description.sponsorshipMolina Center for Energy and the Environmenten_US
dc.language.isoen_US
dc.publisherEuropean Geosciences Unionen_US
dc.relation.isversionofhttp://dx.doi.org/10.5194/acp-11-3789-2011en_US
dc.rightsCreative Commons Attribution 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceCopernicusen_US
dc.titleSimulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaignen_US
dc.typeArticleen_US
dc.identifier.citationLi, G. et al. “Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign.” Atmospheric Chemistry and Physics 11 (2011): 3789-3809. Web. 20 Oct. 2011.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.approverMolina, Luisa Tan
dc.contributor.mitauthorMolina, Luisa Tan
dc.contributor.mitauthorLi, Guohui
dc.contributor.mitauthorLei, Wenfang
dc.relation.journalAtmospheric Chemistry and Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLi, G.; Zavala, M.; Lei, W.; Tsimpidi, A. P.; Karydis, V. A.; Pandis, S. N.; Canagaratna, M. R.; Molina, L. T.en
dc.identifier.orcidhttps://orcid.org/0000-0002-3596-5334
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record