MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Climatology and trends in the forcing of the stratospheric ozone transport

Author(s)
Monier, Erwan; Weare, B. C.
Thumbnail
DownloadMonier-2011-Climatology and trends in the forcing of the stratospheric.pdf (1.760Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
A thorough analysis of the ozone transport was carried out using the Transformed-Mean Eulerian (TEM) tracer continuity equation and the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). In this budget analysis, the chemical net production term, which is calculated as the residual of the other terms, displays the correct features of a chemical sink and source term, including location and seasonality, and shows good agreement in magnitude compared to other methods of calculating ozone loss rates. This study provides further insight into the role of the eddy ozone transport and underlines its fundamental role in the recovery of the ozone hole during spring. The trend analysis reveals that the ozone hole intensification over the 1980–2001 period is not solely related to the trend in chemical losses, but more specifically to the balance between the trends in chemical losses and ozone transport. That is because, in the Southern Hemisphere from October to December, the large increase in the chemical destruction of ozone is balanced by an equally large trend in the eddy transport, associated with a small increase in the mean transport. This study shows that the increase in the eddy transport is characterized by more poleward ozone eddy flux by transient waves in the midlatitudes and by stationary waves in the polar region. Overall, this study makes clearer the close interaction between the trends in ozone chemistry and ozone transport. It reveals that the eddy ozone transport and its long-term changes are an important natural mitigation mechanism for the ozone hole. This work also underlines the need for diagnostics of the eddy transport in chemical transport models used to investigate future ozone recovery.
Date issued
2011-07
URI
http://hdl.handle.net/1721.1/66525
Department
Massachusetts Institute of Technology. Center for Global Change Science; Massachusetts Institute of Technology. Joint Program on the Science & Policy of Global Change
Journal
Atmospheric Chemistry and Physics
Publisher
European Geosciences Union
Citation
Monier, E., and B. C. Weare. “Climatology and trends in the forcing of the stratospheric ozone transport.” Atmospheric Chemistry and Physics 11 (2011): 6311-6323. Web. 20 Oct. 2011.
Version: Final published version
ISSN
1680-7324
1680-7316

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.