Show simple item record

dc.contributor.authorMartin, Adam C.
dc.contributor.authorGelbart, Michael A.
dc.contributor.authorFernandez-Gonzalez, Rodrigo
dc.contributor.authorKaschube, Matthias
dc.contributor.authorWieschaus, Eric F.
dc.date.accessioned2011-10-24T16:25:27Z
dc.date.available2011-10-24T16:25:27Z
dc.date.issued2010-03
dc.date.submitted2009-10
dc.identifier.issn0021-9525
dc.identifier.issn1540-8140
dc.identifier.urihttp://hdl.handle.net/1721.1/66553
dc.description.abstractContractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin meshwork contractions and a ratchet-like stabilization of cell shape drive apical constriction. Here, we investigate how contractile forces are integrated across the tissue. Reducing adherens junction (AJ) levels or ablating actomyosin meshworks causes tissue-wide epithelial tears, which release tension that is predominantly oriented along the anterior–posterior (a-p) embryonic axis. Epithelial tears allow cells normally elongated along the a-p axis to constrict isotropically, which suggests that apical constriction generates anisotropic epithelial tension that feeds back to control cell shape. Epithelial tension requires the transcription factor Twist, which stabilizes apical myosin II, promoting the formation of a supracellular actomyosin meshwork in which radial actomyosin fibers are joined end-to-end at spot AJs. Thus, pulsed actomyosin contractions require a supracellular, tensile meshwork to transmit cellular forces to the tissue level during morphogenesis.en_US
dc.description.sponsorshipAmerican Cancer Society (grant PF-06-143-01-DDC)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH/NIGMS, P50 grant GM071508)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH/NIGMS, R01 grant GM079340)en_US
dc.description.sponsorshipEunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (grant 5R37HD15587)en_US
dc.description.sponsorshipHoward Hughes Medical Institute (Investigator)en_US
dc.language.isoen_US
dc.publisherRockefeller University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1083/jcb.200910099en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMartinen_US
dc.titleIntegration of contractile forces during tissue invaginationen_US
dc.typeArticleen_US
dc.identifier.citationMartin, A. C. et al. “Integration of contractile forces during tissue invagination.” The Journal of Cell Biology 188 (2010): 735-749.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.contributor.approverMartin, Adam C.
dc.contributor.mitauthorMartin, Adam C.
dc.relation.journalJournal of Cell Biologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMartin, A. C.; Gelbart, M.; Fernandez-Gonzalez, R.; Kaschube, M.; Wieschaus, E. F.en
dc.identifier.orcidhttps://orcid.org/0000-0001-8060-2607
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record