Show simple item record

dc.contributor.authorXiao, Xinshu
dc.contributor.authorWang, Zefeng
dc.contributor.authorJang, Minyoung
dc.contributor.authorNutiu, Razvan
dc.contributor.authorWang, Eric T
dc.contributor.authorBurge, Christopher B
dc.date.accessioned2011-10-25T13:49:55Z
dc.date.available2011-10-25T13:49:55Z
dc.date.issued2009-09
dc.date.submitted2009-07
dc.identifier.issn1545-9993
dc.identifier.issn1545-9985
dc.identifier.urihttp://hdl.handle.net/1721.1/66571
dc.description.abstractPre-mRNA splicing is regulated through the combinatorial activity of RNA motifs, including splice sites and splicing regulatory elements. Here we show that the activity of the G-run (polyguanine sequence) class of splicing enhancer elements is approx4-fold higher when adjacent to intermediate strength 5' splice sites (ss) than when adjacent to weak 5' ss, and approx1.3-fold higher relative to strong 5' ss. We observed this dependence on 5' ss strength in both splicing reporters and in global microarray and mRNA-Seq analyses of splicing changes following RNA interference against heterogeneous nuclear ribonucleoprotein (hnRNP) H, which cross-linked to G-runs adjacent to many regulated exons. An exon's responsiveness to changes in hnRNP H levels therefore depends in a complex way on G-run abundance and 5' ss strength. This pattern of activity enables G-runs and hnRNP H to buffer the effects of 5' ss mutations, augmenting both the frequency of 5' ss polymorphism and the evolution of new splicing patterns. Certain other splicing factors may function similarly.en_US
dc.description.sponsorshipAmerican Heart Associationen_US
dc.description.sponsorshipHuman Frontier Science Program (Strasbourg, France)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (equipment grant DBI-0821391)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nsmb.1661en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceBurgeen_US
dc.titleSplice site strength–dependent activity and genetic buffering by poly-G runsen_US
dc.typeArticleen_US
dc.identifier.citationXiao, Xinshu et al. “Splice site strength–dependent activity and genetic buffering by poly-G runs.” Nature Structural & Molecular Biology 16 (2009): 1094-1100.en_US
dc.contributor.departmentWhitaker College of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.approverBurge, Christopher B.
dc.contributor.mitauthorXiao, Xinshu
dc.contributor.mitauthorWang, Zefeng
dc.contributor.mitauthorJang, Minyoung
dc.contributor.mitauthorNutiu, Razvan
dc.contributor.mitauthorWang, Eric T.
dc.contributor.mitauthorBurge, Christopher B.
dc.relation.journalNature Structural and Molecular Biologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsXiao, Xinshu; Wang, Zefeng; Jang, Minyoung; Nutiu, Razvan; Wang, Eric T; Burge, Christopher Ben
dc.identifier.orcidhttps://orcid.org/0000-0002-6605-3637
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record