MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Potent inhibition of cartilage biosynthesis by coincubation with joint capsule through an IL-1-independent pathway

Author(s)
Grodzinsky, Alan J.; Patwari, P.; Lin, S. N.; Kurz, Bodo; Cole, Ada A.; Kumar, S.; ... Show more Show less
Thumbnail
DownloadGrodzinsky-2009-Potent inhibition of cartilage.pdf (1.915Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The reason for the increased risk for development of osteoarthritis (OA) after acute joint trauma is not well understood, but the mechanically injured cartilage may be more susceptible to degradative mediators secreted by other tissues in the joint. To establish a model for such interactions, we coincubated bovine cartilage tissue explants together with normal joint capsule and found a profound (∼70%) reduction in cartilage proteoglycan biosynthesis. This reduction is due to release by the joint capsule of a heat-labile and non-toxic factor. Surprisingly, while cultured synovium is a canonical source of interleukin-1 (IL-1), blockade either by soluble IL-1 type II receptor (sIL-1r) or IL-1 receptor antagonist (IL-1RA) had no effect. Combined blockade of IL-1 and tumor necrosis factor α (TNF-α) also had no effect. To support the clinical relevance of the findings, we harvested joint capsule from post-mortem human knees. Human joint capsule from a normal adult knee also released a substance that caused an ∼40% decrease in cartilage proteoglycan biosynthesis. Furthermore, this inhibition was not affected by IL-1 blockade with either sIL-1r or IL-1RA. These results suggest that joint capsule tissue from a normal knee joint can release an uncharacterized cytokine that potently inhibits cartilage biosynthetic activity by an IL-1- and TNF-independent pathway.
Date issued
2009-08
URI
http://hdl.handle.net/1721.1/66583
Department
Massachusetts Institute of Technology. Center for Biomedical Engineering; Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Scandinavian Journal of Medicine & Science in Sports
Publisher
John Wiley & Sons, Inc.
Citation
Patwari, P. et al. “Potent inhibition of cartilage biosynthesis by coincubation with joint capsule through an IL-1-independent pathway.” Scandinavian Journal of Medicine & Science in Sports 19 (2009): 528-535. Web. 26 Oct. 2011. © John Wiley & Sons, Inc.
Version: Author's final manuscript
ISSN
1600-0838

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.