MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

NLOS Identification and Mitigation for Localization

Author(s)
Marano, Stefano; Gifford, Wesley Michael; Wymeersch, Henk; Win, Moe Z.
Thumbnail
DownloadMarano-2010-NLOS Identification.pdf (1.558Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Sensor networks can benefit greatly from location-awareness, since it allows information gathered by the sensors to be tied to their physical locations. Ultra-wide bandwidth (UWB) transmission is a promising technology for location-aware sensor networks, due to its power efficiency, fine delay resolution, and robust operation in harsh environments. However, the presence of walls and other obstacles presents a significant challenge in terms of localization, as they can result in positively biased distance estimates. We have performed an extensive indoor measurement campaign with FCC-compliant UWB radios to quantify the effect of non-line-of-sight (NLOS) propagation. From these channel pulse responses, we extract features that are representative of the propagation conditions. We then develop classification and regression algorithms based on machine learning techniques, which are capable of: (i) assessing whether a signal was transmitted in LOS or NLOS conditions; and (ii) reducing ranging error caused by NLOS conditions. We evaluate the resulting performance through Monte Carlo simulations and compare with existing techniques. In contrast to common probabilistic approaches that require statistical models of the features, the proposed optimization-based approach is more robust against modeling errors.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/66704
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
IEEE Journal on Selected Areas in Communications
Publisher
Institute of Electrical and Electronics Engineers
Citation
Marano, Stefano et al. “NLOS identification and mitigation for localization based on UWB experimental data.” IEEE Journal on Selected Areas in Communications 28 (2010): 1026-1035. ©2010 IEEE.
Version: Final published version
Other identifiers
INSPEC Accession Number: 11523375
ISSN
0733-8716
1558-0008

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.