dc.contributor.author | Nemati, Shamim | |
dc.contributor.author | Malhotra, Atul | |
dc.contributor.author | Clifford, Gari D. | |
dc.date.accessioned | 2011-11-14T21:43:21Z | |
dc.date.available | 2011-11-14T21:43:21Z | |
dc.date.issued | 2010-06 | |
dc.identifier.issn | 1687-6172 | |
dc.identifier.issn | 1687-6180 | |
dc.identifier.other | Article ID 926305 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/67021 | |
dc.description.abstract | We present an application of a modified Kalman-Filter (KF) framework for data fusion to the estimation of respiratory rate from multiple physiological sources which is robust to background noise. A novel index of the underlying signal quality of respiratory signals is presented and then used to modify the noise covariance matrix of the KF which discounts the effect of noisy data. The signal quality index, together with the KF innovation sequence, is also used to weight multiple independent estimates of the respiratory rate from independent KFs. The approach is evaluated both on a realistic artificial ECG model (with real additive noise) and on real data taken from 30 subjects with overnight polysomnograms, containing ECG, respiration, and peripheral tonometry waveforms from which respiration rates were estimated. Results indicate that our automated voting system can out-perform any individual respiration rate estimation technique at all levels of noise and respiration rates exhibited in our data. We also demonstrate that even the addition of a noisier extra signal leads to an improved estimate using our framework. Moreover, our simulations demonstrate that different ECG respiration extraction techniques have different error profiles with respect to the respiration rate, and therefore a respiration rate-related modification of any fusion algorithm may be appropriate. | en_US |
dc.description.sponsorship | Information Technology Convergence Campus | en_US |
dc.description.sponsorship | National Institute of Biomedical Imaging and Bioengineering (U.S.) | en_US |
dc.description.sponsorship | American Heart Association (Grant 0840159N) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grant R01 EB001659) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grant HL73146) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grant HL085188–01A2) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grant HL090897–01A2) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grant K24HL093218–01A1) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (training Grant T32–HL07901) | en_US |
dc.publisher | Hindawi Pub. Corp/Springer | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1155/2010/926305 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/2.0/ | en_US |
dc.source | Hindawi | en_US |
dc.title | Data Fusion for Improved Respiration Rate Estimation | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Nemati, Shamim, Atul Malhotra, and GariD Clifford. “Data Fusion for Improved Respiration Rate Estimation.” EURASIP Journal on Advances in Signal Processing 2010 Jun 08;(2010): 926305. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.approver | Clifford, Gari D. | |
dc.contributor.mitauthor | Clifford, Gari D. | |
dc.contributor.mitauthor | Nemati, Shamim | |
dc.relation.journal | EURASIP Journal on Advances in Signal Processing | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2011-10-20T19:08:02Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | et al.; licensee BioMed Central Ltd. | |
dspace.orderedauthors | Nemati, Shamim; Malhotra, Atul; Clifford, GariD | en |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |