Show simple item record

dc.contributor.authorRaj, Bhiksha
dc.contributor.authorTuricchia, Lorenzo
dc.contributor.authorSchmidt-Nielsen, Bent
dc.contributor.authorSarpeshkar, Rahul
dc.date.accessioned2011-11-16T13:45:46Z
dc.date.available2011-11-16T13:45:46Z
dc.date.issued2007-06
dc.date.submitted2006-11
dc.identifier.issn1687-4714
dc.identifier.issn1687-4722
dc.identifier.urihttp://hdl.handle.net/1721.1/67033
dc.description.abstractWe describe an FFT-based companding algorithm for preprocessing speech before recognition. The algorithm mimics tone-to-tone suppression and masking in the auditory system to improve automatic speech recognition performance in noise. Moreover, it is also very computationally efficient and suited to digital implementations due to its use of the FFT. In an automotive digits recognition task with the CU-Move database recorded in real environmental noise, the algorithm improves the relative word error by 12.5% at -5 dB signal-to-noise ratio (SNR) and by 6.2% across all SNRs (-5 dB SNR to +5 dB SNR). In the Aurora-2 database recorded with artificially added noise in several environments, the algorithm improves the relative word error rate in almost all situations.en_US
dc.publisherHindawi Publishing Corporationen_US
dc.relation.isversionofhttp://dx.doi.org/10.1155/2007/65420en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.titleAn FFT-Based Companding Front End for Noise-Robust Automatic Speech Recognitionen_US
dc.typeArticleen_US
dc.identifier.citationEURASIP Journal on Audio, Speech, and Music Processing. 2007 Jun 26;2007(1):065420en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.approverTuricchia, Lorenzo
dc.contributor.mitauthorTuricchia, Lorenzo
dc.contributor.mitauthorSarpeshkar, Rahul
dc.relation.journalEURASIP Journal on Audio, Speech, and Music Processingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2011-09-23T17:09:42Z
dc.language.rfc3066en
dc.rights.holderet al.; licensee BioMed Central Ltd.
dspace.orderedauthorsRaj, Bhiksha; Turicchia, Lorenzo; Schmidt-Nielsen, Bent; Sarpeshkar, Rahulen
dc.identifier.orcidhttps://orcid.org/0000-0003-0384-3786
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record