Show simple item record

dc.contributor.authorHendriks, Bart S.
dc.contributor.authorCosgrove, Benjamin D.
dc.contributor.authorAlexopoulos, Leonidas G.
dc.contributor.authorHang, Ta-Chun
dc.contributor.authorSorger, Peter K.
dc.contributor.authorGriffith, Linda G.
dc.contributor.authorLauffenburger, Douglas A.
dc.date.accessioned2011-11-16T22:38:36Z
dc.date.available2011-11-16T22:38:36Z
dc.date.issued2010-04
dc.date.submitted2009-12
dc.identifier.issn1742-206X
dc.identifier.issn1742-2051
dc.identifier.urihttp://hdl.handle.net/1721.1/67044
dc.descriptionRefer to Web version on PubMed Central for supplementary material.en_US
dc.description.abstractIdiosyncratic drug hepatotoxicity is a major problem in pharmaceutical development due to poor prediction capability of standard preclinical toxicity assessments and limited knowledge of its underlying mechanisms. Findings in animal models have shown that adverse effects of numerous drugs with idiosyncratic hepatotoxicity in humans can be reproduced in the presence of coincident inflammatory cytokine signaling. Following these observations, we have recently developed an in vitro drug/inflammatory cytokine co-treatment approach that can reproduce clinical drug hepatotoxicity signatures—particularly for idiosyncratic drugs—in cultured primary human hepatocytes. These observations have suggested that drug-induced stresses may interact with cytokine signaling to induce hepatic cytotoxicity, but the hepatocyte signaling mechanisms governing these interactions are poorly understood. Here, we collect high-throughput phosphoprotein signaling and cytotoxicity measurements in cultured hepatocytes, from multiple human donors, treated with combinations of hepatotoxic drugs (e.g. trovafloxacin, clarithromycin) and cytokines (tumor necrosis factor-α, interferon-γ, interleukin-1α, and interleukin-6). We demonstrate, through orthogonal partial least-squares regression (OPLSR) modeling of these signal-response data, that drug/cytokine hepatic cytotoxicity is integratively controlled by four key signaling pathways: Akt, p70 S6 kinase, MEK–ERK, and p38–HSP27. This modeling predicted, and experimental studies confirmed, that the MEK–ERK and p38–HSP27 pathways contribute pro-death signaling influences in drug/cytokine hepatic cytotoxicity synergy. Further, our four-pathway OPLSR model produced successful prediction of drug/cytokine hepatic cytotoxicities across different human donors, even though signaling and cytotoxicity responses were both highly donor-specific. Our findings highlight the critical role of kinase signaling in drug/cytokine hepatic cytotoxicity synergies and reveal that hepatic cytotoxicity responses are governed by multi-pathway signaling network balance.en_US
dc.description.sponsorshipPfizer Inc.en_US
dc.description.sponsorshipInstitute for Collaborative Biotechnologiesen_US
dc.description.sponsorshipMIT Center for Cell Decision Processesen_US
dc.description.sponsorshipNational Institute of Mental Health (U.S.) (grant P50-GM68762)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Biotechnology Process Engineering Centeren_US
dc.description.sponsorshipMassachusetts Institute of Technology. Center for Environmental Health Sciencesen_US
dc.description.sponsorshipNational Institute of Mental Health (U.S.) (grant U19ES011399)en_US
dc.description.sponsorshipWhitaker Foundationen_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/b926287cen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePubMed Centralen_US
dc.titleCytokine-associated drug toxicity in human hepatocytes is associated signaling network dysregulationen_US
dc.typeArticleen_US
dc.identifier.citationCosgrove, Benjamin D. et al. “Cytokine-associated drug toxicity in human hepatocytes is associated with signaling network dysregulation.” Molecular BioSystems 6 (2010): 1195. Web. 16 Nov. 2011. © 2010 Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Biotechnology Process Engineering Centeren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.approverLauffenburger, Douglas A.
dc.contributor.mitauthorCosgrove, Benjamin D.
dc.contributor.mitauthorAlexopoulos, Leonidas G.
dc.contributor.mitauthorHang, Ta-Chun
dc.contributor.mitauthorSorger, Peter K.
dc.contributor.mitauthorGriffith, Linda G.
dc.contributor.mitauthorLauffenburger, Douglas A.
dc.relation.journalMolecular BioSystemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCosgrove, Benjamin D.; Alexopoulos, Leonidas G.; Hang, Ta-chun; Hendriks, Bart S.; Sorger, Peter K.; Griffith, Linda G.; Lauffenburger, Douglas A.en
dc.identifier.orcidhttps://orcid.org/0000-0002-1801-5548
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record