dc.contributor.author | Khan, Kamil A. | |
dc.contributor.author | Saxena, Vibhu | |
dc.contributor.author | Barton, Paul I. | |
dc.date.accessioned | 2011-11-29T19:10:18Z | |
dc.date.available | 2011-11-29T19:10:18Z | |
dc.date.issued | 2011-07 | |
dc.date.submitted | 2010-08 | |
dc.identifier.issn | 1064-8275 | |
dc.identifier.issn | 1095-7197 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/67305 | |
dc.description.abstract | A theory is developed for local, first-order sensitivity analysis of limit-cycle oscillating hybrid systems, which are dynamical systems exhibiting both continuous-state and discrete-state dynamics whose state trajectories are closed, isolated, and time-periodic. Methods for the computation of initial-condition sensitivities and parametric sensitivities are developed to account exactly for any jumps in the sensitivities at discrete transitions and to exploit the time-periodicity of the system. It is shown that the initial-condition sensitivities of any limit-cycle oscillating hybrid system can be represented as the sum of a time-decaying component and a time-periodic component so that they become periodic in the long-time limit. A method is developed for decomposition of the parametric sensitivities into three parts, characterizing the influence of parameter changes on period, state variable amplitudes, and relative phases, respectively. The computation of parametric sensitivities of period, amplitudes, and different types of phases is also described. The methods developed in this work are applied to particular models for illustration, including models exhibiting state variable jumps. | en_US |
dc.language.iso | en_US | |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1137/100804632 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | SIAM | en_US |
dc.title | Sensitivity Analysis of Limit-Cycle Oscillating Hybrid Systems | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Khan, Kamil A., Vibhu P. Saxena, and Paul I. Barton. “Sensitivity Analysis of Limit-Cycle Oscillating Hybrid Systems.” SIAM Journal on Scientific Computing 33 (2011): 1475. © 2011 Society for Industrial and Applied Mathematics. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.approver | Barton, Paul I. | |
dc.contributor.mitauthor | Barton, Paul I. | |
dc.contributor.mitauthor | Khan, Kamil A. | |
dc.contributor.mitauthor | Saxena, Vibhu | |
dc.relation.journal | SIAM Journal on Scientific Computing | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Khan, Kamil A.; Saxena, Vibhu P.; Barton, Paul I. | en |
dc.identifier.orcid | https://orcid.org/0000-0003-2895-9443 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |