MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cooperative localization in wireless networks

Author(s)
Wymeersch, Henk; Lien, Jaime; Win, Moe Z.
Thumbnail
DownloadWymeersch-2009-Cooperative localization in wireless networks.pdf (1.910Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Location-aware technologies will revolutionize many aspects of commercial, public service, and military sectors, and are expected to spawn numerous unforeseen applications. A new era of highly accurate ubiquitous location-awareness is on the horizon, enabled by a paradigm of cooperation between nodes. In this paper, we give an overview of cooperative localization approaches and apply them to ultrawide bandwidth (UWB) wireless networks. UWB transmission technology is particularly attractive for short- to medium-range localization, especially in GPS-denied environments: wide transmission bandwidths enable robust communication in dense multipath scenarios, and the ability to resolve subnanosecond delays results in centimeter-level distance resolution. We will describe several cooperative localization algorithms and quantify their performance, based on realistic UWB ranging models developed through an extensive measurement campaign using FCC-compliant UWB radios. We will also present a powerful localization algorithm by mapping a graphical model for statistical inference onto the network topology, which results in a net-factor graph, and by developing a suitable net-message passing schedule. The resulting algorithm (SPAWN) is fully distributed, can cope with a wide variety of scenarios, and requires little communication overhead to achieve accurate and robust localization.
Date issued
2009-03
URI
http://hdl.handle.net/1721.1/67368
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Proceedings of the IEEE
Publisher
Institute of Electrical and Electronics Engineers
Citation
Wymeersch, H., J. Lien, and M.Z. Win. “Cooperative Localization in Wireless Networks.” Proceedings of the IEEE 97.2 (2009): 427-450. ©2011 IEEE.
Version: Final published version
Other identifiers
INSPEC Accession Number: 10545957
ISSN
0018-9219

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.