MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uncovering space-independent communities in spatial networks

Author(s)
Expert, Paul; Evans, Tim S.; Blondel, Vincent D.; Lambiotte, Renaud
Thumbnail
DownloadBlondel-2011-May-Uncovering space-independent communities in spatial networks.pdf (826.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Many complex systems are organized in the form of a network embedded in space. Important examples include the physical Internet infrastucture, road networks, flight connections, brain functional networks, and social networks. The effect of space on network topology has recently come under the spotlight because of the emergence of pervasive technologies based on geolocalization, which constantly fill databases with people’s movements and thus reveal their trajectories and spatial behavior. Extracting patterns and regularities from the resulting massive amount of human mobility data requires the development of appropriate tools for uncovering information in spatially embedded networks. In contrast with most works that tend to apply standard network metrics to any type of network, we argue in this paper for a careful treatment of the constraints imposed by space on network topology. In particular, we focus on the problem of community detection and propose a modularity function adapted to spatial networks. We show that it is possible to factor out the effect of space in order to reveal more clearly hidden structural similarities between the nodes. Methods are tested on a large mobile phone network and computer-generated benchmarks where the effect of space has been incorporated.
Date issued
2011-05
URI
http://hdl.handle.net/1721.1/67467
Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
National Academy of Sciences (U.S.)
Citation
Expert, P. et al. “Uncovering space-independent communities in spatial networks.” Proceedings of the National Academy of Sciences 108.19 (2011): 7663-7668. ©2011 by the National Academy of Sciences.
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.