MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous Blooming of Convex Polyhedra

Author(s)
Demaine, Erik D.; Demaine, Martin L.; Hart, Vi; Iacono, John; Langerman, Stefan; O'Rourke, Joseph; ... Show more Show less
Thumbnail
DownloadDemaine_Continuous blooming.pdf (270.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.
Date issued
2011-05
URI
http://hdl.handle.net/1721.1/67481
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Graphs and Combinatorics
Publisher
Springer-Verlag
Citation
Demaine, Erik D. et al. “Continuous Blooming of Convex Polyhedra.” Graphs and Combinatorics 27 (2011): 363-376. Web. 8 Dec. 2011.
Version: Author's final manuscript
ISSN
1435-5914
0911-0119

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.