Show simple item record

dc.contributor.authorUhan, Nelson A.
dc.contributor.authorSchulz, Andreas S
dc.date.accessioned2011-12-14T14:14:40Z
dc.date.available2011-12-14T14:14:40Z
dc.date.issued2011-02
dc.date.submitted2010-12
dc.identifier.issn0364-765X
dc.identifier.issn1526-5471
dc.identifier.urihttp://hdl.handle.net/1721.1/67660
dc.description.abstractWe consider the problem of minimizing the weighted sum of completion times on a single machine subject to bipartite precedence constraints in which all minimal jobs have unit processing time and zero weight, and all maximal jobs have zero processing time and unit weight. For various probability distributions over these instances—including the uniform distribution—we show several “almost all”-type results. First, we show that almost all instances are prime with respect to a well-studied decomposition for this scheduling problem. Second, we show that for almost all instances, every feasible schedule is arbitrarily close to optimal. Finally, for almost all instances, we give a lower bound on the integrality gap of various linear programming relaxations of this problem.en_US
dc.language.isoen_US
dc.publisherINFORMSen_US
dc.relation.isversionofhttp://dx.doi.org/10.1287/moor.1100.0479en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Andreas Schulzen_US
dc.titleNear-optimal solutions and large integrality gaps for almost all instances of single-machine precedence-constrained schedulingen_US
dc.typeArticleen_US
dc.identifier.citationSchulz, A. S., and N. A. Uhan. “Near-Optimal Solutions and Large Integrality Gaps for Almost All Instances of Single-Machine Precedence-Constrained Scheduling.” Mathematics of Operations Research 36.1 (2011)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.approverSchulz, Andreas S.
dc.contributor.mitauthorSchulz, Andreas S.
dc.relation.journalMathematics of Operations Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSchulz, A. S.; Uhan, N. A.en
dc.identifier.orcidhttps://orcid.org/0000-0002-9595-459X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record