MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of HDG Methods for Stokes Flow

Author(s)
Cockburn, Bernardo; Gopalakrishnan, Jayadeep; Nguyen, Ngoc Cuong; Peraire, Jaime; Sayas, Francisco-Javier
Thumbnail
DownloadPeraire_Analysis of HDG_2011_unlocked.pdf (925.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper, we analyze a hybridizable discontinuous Galerkin method for numerically solving the Stokes equations. The method uses polynomials of degree $ k$ for all the components of the approximate solution of the gradient-velocity-pressure formulation. The novelty of the analysis is the use of a new projection tailored to the very structure of the numerical traces of the method. It renders the analysis of the projection of the errors very concise and allows us to see that the projection of the error in the velocity superconverges. As a consequence, we prove that the approximations of the velocity gradient, the velocity and the pressure converge with the optimal order of convergence of $ k+1$ in $ L[superscript 2]$ for any $ k [greater than or equal to] 0$. Moreover, taking advantage of the superconvergence properties of the velocity, we introduce a new element-by-element postprocessing to obtain a new velocity approximation which is exactly divergence-free, $ \mathbf{H}($div$ )$-conforming, and converges with order $ k+2$ for $ k[greater than or equal to]1$ and with order $ 1$ for $ k=0$. Numerical experiments are presented which validate the theoretical results.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/67680
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Mathematics of Computation
Publisher
American Mathematical Society
Citation
Cockburn, Bernardo et al. “Analysis of HDG methods for Stokes flow.” Mathematics of Computation 80.274 (2011): 723-723.© 2011 American Mathematical Society.
Version: Final published version
ISSN
0025-5718
1088-6842

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.